Yevgeniy Vinogradskiy, Houda Bahig, Nicholas W Bucknell, Jeffrey Buchsbaum, Hui-Kuo George Shu
{"title":"会议报告:先进定量成像技术在个性化放疗中的临床应用回顾。","authors":"Yevgeniy Vinogradskiy, Houda Bahig, Nicholas W Bucknell, Jeffrey Buchsbaum, Hui-Kuo George Shu","doi":"10.3390/tomography10110132","DOIUrl":null,"url":null,"abstract":"<p><p>The topic of quantitative imaging in radiation therapy was presented as a \"Masterclass\" at the 2023 annual meeting of the American Society of Radiation Oncology (ASTRO). Dual-energy computed tomography (CT) and single-positron computed tomography were reviewed in detail as the first portion of the meeting session, with data showing utility in many aspects of radiation oncology including treatment planning and dose response. Positron emission tomography/CT scans evaluating the functional volume of lung tissue so as to provide optimal avoidance of healthy lungs were presented second. Advanced brain imaging was then discussed in the context of different forms of magnetic resonance scanning methods as the third area noted with significant discussion of ongoing research programs. Quantitative image analysis was presented to provide clinical utility for the analysis of patients with head and neck cancer. Finally, quality assurance was reviewed for different forms of quantitative imaging given the critical nature of imaging when numerical valuation, not just relative contrast, plays a crucial role in clinical process and decision-making. Conclusions and thoughts are shared in the conclusion, noting strong data supporting the use of quantitative imaging in radiation therapy going forward and that more studies are needed to move the field forward.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 11","pages":"1798-1813"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conference Report: Review of Clinical Implementation of Advanced Quantitative Imaging Techniques for Personalized Radiotherapy.\",\"authors\":\"Yevgeniy Vinogradskiy, Houda Bahig, Nicholas W Bucknell, Jeffrey Buchsbaum, Hui-Kuo George Shu\",\"doi\":\"10.3390/tomography10110132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The topic of quantitative imaging in radiation therapy was presented as a \\\"Masterclass\\\" at the 2023 annual meeting of the American Society of Radiation Oncology (ASTRO). Dual-energy computed tomography (CT) and single-positron computed tomography were reviewed in detail as the first portion of the meeting session, with data showing utility in many aspects of radiation oncology including treatment planning and dose response. Positron emission tomography/CT scans evaluating the functional volume of lung tissue so as to provide optimal avoidance of healthy lungs were presented second. Advanced brain imaging was then discussed in the context of different forms of magnetic resonance scanning methods as the third area noted with significant discussion of ongoing research programs. Quantitative image analysis was presented to provide clinical utility for the analysis of patients with head and neck cancer. Finally, quality assurance was reviewed for different forms of quantitative imaging given the critical nature of imaging when numerical valuation, not just relative contrast, plays a crucial role in clinical process and decision-making. Conclusions and thoughts are shared in the conclusion, noting strong data supporting the use of quantitative imaging in radiation therapy going forward and that more studies are needed to move the field forward.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"10 11\",\"pages\":\"1798-1813\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography10110132\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10110132","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Conference Report: Review of Clinical Implementation of Advanced Quantitative Imaging Techniques for Personalized Radiotherapy.
The topic of quantitative imaging in radiation therapy was presented as a "Masterclass" at the 2023 annual meeting of the American Society of Radiation Oncology (ASTRO). Dual-energy computed tomography (CT) and single-positron computed tomography were reviewed in detail as the first portion of the meeting session, with data showing utility in many aspects of radiation oncology including treatment planning and dose response. Positron emission tomography/CT scans evaluating the functional volume of lung tissue so as to provide optimal avoidance of healthy lungs were presented second. Advanced brain imaging was then discussed in the context of different forms of magnetic resonance scanning methods as the third area noted with significant discussion of ongoing research programs. Quantitative image analysis was presented to provide clinical utility for the analysis of patients with head and neck cancer. Finally, quality assurance was reviewed for different forms of quantitative imaging given the critical nature of imaging when numerical valuation, not just relative contrast, plays a crucial role in clinical process and decision-making. Conclusions and thoughts are shared in the conclusion, noting strong data supporting the use of quantitative imaging in radiation therapy going forward and that more studies are needed to move the field forward.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.