神经肌肉疾病:基因组学驱动的进步。

Anna Cho
{"title":"神经肌肉疾病:基因组学驱动的进步。","authors":"Anna Cho","doi":"10.1186/s44342-024-00027-y","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromuscular diseases (NMDs) are a group of rare disorders characterized by significant genetic and clinical complexity. Advances in genomics have revolutionized both the diagnosis and treatment of NMDs. While fewer than 30 NMDs had known genetic causes before the 1990s, more than 600 have now been identified, largely due to the adoption of next-generation sequencing (NGS) technologies such as whole-exome sequencing (WES) and whole-genome sequencing (WGS). These technologies have enabled more precise and earlier diagnoses, although the genetic complexity of many NMDs continues to pose challenges. Gene therapy has been a transformative breakthrough in the treatment of NMDs. In spinal muscular atrophy (SMA), therapies like nusinersen, onasemnogene abeparvovec, and risdiplam have dramatically improved patient outcomes. Similarly, Duchenne muscular dystrophy (DMD) has seen significant progress, most notably with the FDA approval of delandistrogene moxeparvovec, the first micro-dystrophin gene therapy. Despite these advancements, challenges remain, including the rarity of many NMDs, genetic heterogeneity, and the high costs associated with genomic technologies and therapies. Continued progress in gene therapy, RNA-based therapeutics, and personalized medicine holds promise for further breakthroughs in the management of these debilitating diseases.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"22 1","pages":"24"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600827/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuromuscular diseases: genomics-driven advances.\",\"authors\":\"Anna Cho\",\"doi\":\"10.1186/s44342-024-00027-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuromuscular diseases (NMDs) are a group of rare disorders characterized by significant genetic and clinical complexity. Advances in genomics have revolutionized both the diagnosis and treatment of NMDs. While fewer than 30 NMDs had known genetic causes before the 1990s, more than 600 have now been identified, largely due to the adoption of next-generation sequencing (NGS) technologies such as whole-exome sequencing (WES) and whole-genome sequencing (WGS). These technologies have enabled more precise and earlier diagnoses, although the genetic complexity of many NMDs continues to pose challenges. Gene therapy has been a transformative breakthrough in the treatment of NMDs. In spinal muscular atrophy (SMA), therapies like nusinersen, onasemnogene abeparvovec, and risdiplam have dramatically improved patient outcomes. Similarly, Duchenne muscular dystrophy (DMD) has seen significant progress, most notably with the FDA approval of delandistrogene moxeparvovec, the first micro-dystrophin gene therapy. Despite these advancements, challenges remain, including the rarity of many NMDs, genetic heterogeneity, and the high costs associated with genomic technologies and therapies. Continued progress in gene therapy, RNA-based therapeutics, and personalized medicine holds promise for further breakthroughs in the management of these debilitating diseases.</p>\",\"PeriodicalId\":94288,\"journal\":{\"name\":\"Genomics & informatics\",\"volume\":\"22 1\",\"pages\":\"24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics & informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s44342-024-00027-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-024-00027-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经肌肉疾病(NMDs)是一组罕见疾病,其特点是遗传和临床复杂性显著。基因组学的进步彻底改变了 NMDs 的诊断和治疗。20 世纪 90 年代以前,已知遗传原因的 NMDs 不到 30 种,而现在已经确定的有 600 多种,这主要归功于新一代测序(NGS)技术的采用,如全外显子组测序(WES)和全基因组测序(WGS)。尽管许多 NMDs 的遗传复杂性仍构成挑战,但这些技术已使诊断更加精确和提前。基因疗法是治疗 NMDs 的变革性突破。在脊髓性肌萎缩症(SMA)方面,nusinersen、onasemnogene abeparvovec 和 risdiplam 等疗法极大地改善了患者的预后。同样,杜氏肌营养不良症(DMD)也取得了重大进展,其中最引人注目的是美国食品及药物管理局批准了首个微量肌营养不良蛋白基因疗法 delandistrogene moxeparvovec。尽管取得了这些进展,但挑战依然存在,包括许多 NMDs 的罕见性、遗传异质性以及与基因组技术和疗法相关的高昂成本。基因疗法、基于 RNA 的疗法和个性化医疗的不断进步有望在治疗这些使人衰弱的疾病方面取得进一步突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuromuscular diseases: genomics-driven advances.

Neuromuscular diseases (NMDs) are a group of rare disorders characterized by significant genetic and clinical complexity. Advances in genomics have revolutionized both the diagnosis and treatment of NMDs. While fewer than 30 NMDs had known genetic causes before the 1990s, more than 600 have now been identified, largely due to the adoption of next-generation sequencing (NGS) technologies such as whole-exome sequencing (WES) and whole-genome sequencing (WGS). These technologies have enabled more precise and earlier diagnoses, although the genetic complexity of many NMDs continues to pose challenges. Gene therapy has been a transformative breakthrough in the treatment of NMDs. In spinal muscular atrophy (SMA), therapies like nusinersen, onasemnogene abeparvovec, and risdiplam have dramatically improved patient outcomes. Similarly, Duchenne muscular dystrophy (DMD) has seen significant progress, most notably with the FDA approval of delandistrogene moxeparvovec, the first micro-dystrophin gene therapy. Despite these advancements, challenges remain, including the rarity of many NMDs, genetic heterogeneity, and the high costs associated with genomic technologies and therapies. Continued progress in gene therapy, RNA-based therapeutics, and personalized medicine holds promise for further breakthroughs in the management of these debilitating diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural insights into antibody-based immunotherapy for hepatocellular carcinoma. DeepDoublet identifies neighboring cell-dependent gene expression. Rore: robust and efficient antioxidant protein classification via a novel dimensionality reduction strategy based on learning of fewer features. Rare disease genomics and precision medicine. Common genetic etiologies of sensorineural hearing loss in Koreans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1