{"title":"配体催化镍催化具有多种原生官能团的烯烃的二羧官能化反应","authors":"Dao-Ming Wang, Hui-Mei Shan, Li-Qin She, Yu-Qing He, Yichen Wu, Yong Tang, Li-Ping Xu, Peng Wang","doi":"10.1038/s41467-024-54170-9","DOIUrl":null,"url":null,"abstract":"<p>The transition metal-catalysed dicarbofunctionalisation of unactivated alkenes normally requires exogenous strong coordinated directing groups, thus reducing the overall reaction efficiency. Here, we report a ligand-enabled Ni(II)-catalysed dicarbofunctionalisation of unactivated alkenes with aryl/alkenyl boronic acids and alkyl halides as the coupling partners with a diverse range of native functional groups as the directing group. This dicarbofunctionalisation protocol provides an efficient and direct route towards vicinal 1,2-disubstituted alkanes using primary, secondary, tertiary amides, sulfonamides, as well as secondary and tertiary amines under redox-neutral conditions that are challenging to access through conventional methods. The key to the success of this reaction is the use of a bulky <i>β</i>-diketone ligand, which could enable the insertion of alkene to aryl-Ni(II) species, stabilize the alkyl-Ni(II) species and inhibit the homolytic alkyl-Ni(II) cleavage, supporting by both experimental and computational studies. This dicarbofunctionalisation reaction features the use of native directing group, a broad substrate scope, and excellent scalability.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"13 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ligand-enabled Ni-catalysed dicarbofunctionalisation of alkenes with diverse native functional groups\",\"authors\":\"Dao-Ming Wang, Hui-Mei Shan, Li-Qin She, Yu-Qing He, Yichen Wu, Yong Tang, Li-Ping Xu, Peng Wang\",\"doi\":\"10.1038/s41467-024-54170-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transition metal-catalysed dicarbofunctionalisation of unactivated alkenes normally requires exogenous strong coordinated directing groups, thus reducing the overall reaction efficiency. Here, we report a ligand-enabled Ni(II)-catalysed dicarbofunctionalisation of unactivated alkenes with aryl/alkenyl boronic acids and alkyl halides as the coupling partners with a diverse range of native functional groups as the directing group. This dicarbofunctionalisation protocol provides an efficient and direct route towards vicinal 1,2-disubstituted alkanes using primary, secondary, tertiary amides, sulfonamides, as well as secondary and tertiary amines under redox-neutral conditions that are challenging to access through conventional methods. The key to the success of this reaction is the use of a bulky <i>β</i>-diketone ligand, which could enable the insertion of alkene to aryl-Ni(II) species, stabilize the alkyl-Ni(II) species and inhibit the homolytic alkyl-Ni(II) cleavage, supporting by both experimental and computational studies. This dicarbofunctionalisation reaction features the use of native directing group, a broad substrate scope, and excellent scalability.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54170-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54170-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ligand-enabled Ni-catalysed dicarbofunctionalisation of alkenes with diverse native functional groups
The transition metal-catalysed dicarbofunctionalisation of unactivated alkenes normally requires exogenous strong coordinated directing groups, thus reducing the overall reaction efficiency. Here, we report a ligand-enabled Ni(II)-catalysed dicarbofunctionalisation of unactivated alkenes with aryl/alkenyl boronic acids and alkyl halides as the coupling partners with a diverse range of native functional groups as the directing group. This dicarbofunctionalisation protocol provides an efficient and direct route towards vicinal 1,2-disubstituted alkanes using primary, secondary, tertiary amides, sulfonamides, as well as secondary and tertiary amines under redox-neutral conditions that are challenging to access through conventional methods. The key to the success of this reaction is the use of a bulky β-diketone ligand, which could enable the insertion of alkene to aryl-Ni(II) species, stabilize the alkyl-Ni(II) species and inhibit the homolytic alkyl-Ni(II) cleavage, supporting by both experimental and computational studies. This dicarbofunctionalisation reaction features the use of native directing group, a broad substrate scope, and excellent scalability.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.