Changhao Zhao, Andreja Benčan, Matthias Bohnen, Fangping Zhuo, Xiaolong Ma, Goran Dražić, Ralf Müller, Shengtao Li, Jurij Koruza, Jürgen Rödel
{"title":"应力诱发的沉淀变体选择对压电陶瓷各向异性电特性的影响","authors":"Changhao Zhao, Andreja Benčan, Matthias Bohnen, Fangping Zhuo, Xiaolong Ma, Goran Dražić, Ralf Müller, Shengtao Li, Jurij Koruza, Jürgen Rödel","doi":"10.1038/s41467-024-54230-0","DOIUrl":null,"url":null,"abstract":"<p>Precipitation hardening has been recently validated as a new mechanism for domain wall pinning and mechanical loss reduction in piezoelectrics. While anisometric precipitates have high pinning strengths, there is limited knowledge about the electrical anisotropy of the precipitation-hardened piezoceramics. In the present work, we successfully orient the precipitates in Li<sub>0.18</sub>Na<sub>0.82</sub>NbO<sub>3</sub> piezoceramics by applying a uniaxial stress during the aging and studied its electrical anisotropy. Predicted by mechanical simulation and verified by transmission electron microscopy, it is demonstrated that the precipitate variant with its long axis perpendicular to the applied stress is energetically favored. The electrical anisotropy of the stress-assisted aged Li<sub>0.18</sub>Na<sub>0.82</sub>NbO<sub>3</sub> is studied by applying electrical fields parallel or perpendicular to the stress axis. The domain wall contribution to permittivity is found to vary by more than a factor of two depending on orientation. In addition, the domain walls are more difficult to be activated by increasing the temperature when the electric field is perpendicular to the stress axis. Our work highlights the precipitate variant selection induced by stress-assisted aging and the related electrical anisotropy in piezoceramics. This technique enables the precipitate orientation in piezoceramics and the utilization of its anisotropy, providing fundamental insight into precipitate-domain-wall interactions and setting the ground for leveraging precipitation hardening effect in piezoceramics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of stress-induced precipitate variant selection on anisotropic electrical properties of piezoceramics\",\"authors\":\"Changhao Zhao, Andreja Benčan, Matthias Bohnen, Fangping Zhuo, Xiaolong Ma, Goran Dražić, Ralf Müller, Shengtao Li, Jurij Koruza, Jürgen Rödel\",\"doi\":\"10.1038/s41467-024-54230-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precipitation hardening has been recently validated as a new mechanism for domain wall pinning and mechanical loss reduction in piezoelectrics. While anisometric precipitates have high pinning strengths, there is limited knowledge about the electrical anisotropy of the precipitation-hardened piezoceramics. In the present work, we successfully orient the precipitates in Li<sub>0.18</sub>Na<sub>0.82</sub>NbO<sub>3</sub> piezoceramics by applying a uniaxial stress during the aging and studied its electrical anisotropy. Predicted by mechanical simulation and verified by transmission electron microscopy, it is demonstrated that the precipitate variant with its long axis perpendicular to the applied stress is energetically favored. The electrical anisotropy of the stress-assisted aged Li<sub>0.18</sub>Na<sub>0.82</sub>NbO<sub>3</sub> is studied by applying electrical fields parallel or perpendicular to the stress axis. The domain wall contribution to permittivity is found to vary by more than a factor of two depending on orientation. In addition, the domain walls are more difficult to be activated by increasing the temperature when the electric field is perpendicular to the stress axis. Our work highlights the precipitate variant selection induced by stress-assisted aging and the related electrical anisotropy in piezoceramics. This technique enables the precipitate orientation in piezoceramics and the utilization of its anisotropy, providing fundamental insight into precipitate-domain-wall interactions and setting the ground for leveraging precipitation hardening effect in piezoceramics.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54230-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54230-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Impact of stress-induced precipitate variant selection on anisotropic electrical properties of piezoceramics
Precipitation hardening has been recently validated as a new mechanism for domain wall pinning and mechanical loss reduction in piezoelectrics. While anisometric precipitates have high pinning strengths, there is limited knowledge about the electrical anisotropy of the precipitation-hardened piezoceramics. In the present work, we successfully orient the precipitates in Li0.18Na0.82NbO3 piezoceramics by applying a uniaxial stress during the aging and studied its electrical anisotropy. Predicted by mechanical simulation and verified by transmission electron microscopy, it is demonstrated that the precipitate variant with its long axis perpendicular to the applied stress is energetically favored. The electrical anisotropy of the stress-assisted aged Li0.18Na0.82NbO3 is studied by applying electrical fields parallel or perpendicular to the stress axis. The domain wall contribution to permittivity is found to vary by more than a factor of two depending on orientation. In addition, the domain walls are more difficult to be activated by increasing the temperature when the electric field is perpendicular to the stress axis. Our work highlights the precipitate variant selection induced by stress-assisted aging and the related electrical anisotropy in piezoceramics. This technique enables the precipitate orientation in piezoceramics and the utilization of its anisotropy, providing fundamental insight into precipitate-domain-wall interactions and setting the ground for leveraging precipitation hardening effect in piezoceramics.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.