用于固体氧化物燃料电池的优质过氧化物铁氧体阳极的氧空位诱导 A 位有序化

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-11-28 DOI:10.1016/j.jallcom.2024.177827
Peng Su, Jie Shan, Fang Wang, Yu Shen, Jingwei Li
{"title":"用于固体氧化物燃料电池的优质过氧化物铁氧体阳极的氧空位诱导 A 位有序化","authors":"Peng Su, Jie Shan, Fang Wang, Yu Shen, Jingwei Li","doi":"10.1016/j.jallcom.2024.177827","DOIUrl":null,"url":null,"abstract":"Introducing pentavalent niobium stabilizes perovskite lattice of ferrites but reduces oxygen vacancy content. While oxygen vacancies are beneficial for gas adsorption, ion diffusion, and catalytic activity in perovskites, this trade-off is a challenge. Herein, by adjusting A-site rare earth/alkaline earth ratio, we synthesize ABO<sub>3</sub>-structured perovskite oxides Pr<sub>0.75</sub>Sr<sub>0.25</sub>Fe<sub>0.875</sub>Nb<sub>0.125</sub>O<sub>3-δ</sub> (PSFN6271) and Pr<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.875</sub>Nb<sub>0.125</sub>O<sub>3-δ</sub> (PSFN4471) and evaluate their electrochemical performance as anodes for solid oxide fuel cells. PSFN4471 undergoes phase transition in reducing environment, from orthorhombic simple perovskite to tetragonal A-site ordered layered perovskite PrSrFe<sub>1.75</sub>Nb<sub>0.25</sub>O<sub>6-δ</sub> (L-PSFN4471), with the exsolution of Fe<sup>0</sup> nanoparticles. High performance, superior coking and sulfur tolerance are demonstrated for L-PSFN4471 anode. We reveal that oxygen vacancy formation is the driven force for the A-site ordering of PSFN4471 and study the differences between PSFN6271 and PSFN4471 in physiochemical properties and electrochemical performance. We demonstrate that the L-PSFN4471 is a high-performance and promising SOFC alternative anode with considerable coking and sulfur poisoning resistance.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"5 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancy induced A-site ordering of a superior perovskite ferrite anode for solid oxide fuel cells\",\"authors\":\"Peng Su, Jie Shan, Fang Wang, Yu Shen, Jingwei Li\",\"doi\":\"10.1016/j.jallcom.2024.177827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introducing pentavalent niobium stabilizes perovskite lattice of ferrites but reduces oxygen vacancy content. While oxygen vacancies are beneficial for gas adsorption, ion diffusion, and catalytic activity in perovskites, this trade-off is a challenge. Herein, by adjusting A-site rare earth/alkaline earth ratio, we synthesize ABO<sub>3</sub>-structured perovskite oxides Pr<sub>0.75</sub>Sr<sub>0.25</sub>Fe<sub>0.875</sub>Nb<sub>0.125</sub>O<sub>3-δ</sub> (PSFN6271) and Pr<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.875</sub>Nb<sub>0.125</sub>O<sub>3-δ</sub> (PSFN4471) and evaluate their electrochemical performance as anodes for solid oxide fuel cells. PSFN4471 undergoes phase transition in reducing environment, from orthorhombic simple perovskite to tetragonal A-site ordered layered perovskite PrSrFe<sub>1.75</sub>Nb<sub>0.25</sub>O<sub>6-δ</sub> (L-PSFN4471), with the exsolution of Fe<sup>0</sup> nanoparticles. High performance, superior coking and sulfur tolerance are demonstrated for L-PSFN4471 anode. We reveal that oxygen vacancy formation is the driven force for the A-site ordering of PSFN4471 and study the differences between PSFN6271 and PSFN4471 in physiochemical properties and electrochemical performance. We demonstrate that the L-PSFN4471 is a high-performance and promising SOFC alternative anode with considerable coking and sulfur poisoning resistance.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.177827\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177827","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

引入五价铌可稳定铁氧体的包晶晶格,但会降低氧空位含量。虽然氧空位有利于气体吸附、离子扩散和过氧化物晶中的催化活性,但这种权衡是一项挑战。在此,我们通过调整 A 位稀土/碱土的比例,合成了 ABO3 结构的包晶氧化物 Pr0.75Sr0.25Fe0.875Nb0.125O3-δ (PSFN6271)和 Pr0.5Sr0.5Fe0.875Nb0.125O3-δ (PSFN4471),并评估了它们作为固体氧化物燃料电池阳极的电化学性能。PSFN4471 在还原环境中发生了相变,从正方晶简单包晶转变为四方晶 A 位有序层状包晶 PrSrFe1.75Nb0.25O6-δ(L-PSFN4471),并伴有 Fe0 纳米颗粒的溶出。L-PSFN4471 阳极具有高性能、优异的结焦性和耐硫性。我们揭示了氧空位的形成是 PSFN4471 A 位有序化的驱动力,并研究了 PSFN6271 和 PSFN4471 在理化性质和电化学性能方面的差异。我们证明了 L-PSFN4471 是一种高性能、有前途的 SOFC 替代阳极,具有相当强的抗结焦和抗硫中毒能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxygen vacancy induced A-site ordering of a superior perovskite ferrite anode for solid oxide fuel cells
Introducing pentavalent niobium stabilizes perovskite lattice of ferrites but reduces oxygen vacancy content. While oxygen vacancies are beneficial for gas adsorption, ion diffusion, and catalytic activity in perovskites, this trade-off is a challenge. Herein, by adjusting A-site rare earth/alkaline earth ratio, we synthesize ABO3-structured perovskite oxides Pr0.75Sr0.25Fe0.875Nb0.125O3-δ (PSFN6271) and Pr0.5Sr0.5Fe0.875Nb0.125O3-δ (PSFN4471) and evaluate their electrochemical performance as anodes for solid oxide fuel cells. PSFN4471 undergoes phase transition in reducing environment, from orthorhombic simple perovskite to tetragonal A-site ordered layered perovskite PrSrFe1.75Nb0.25O6-δ (L-PSFN4471), with the exsolution of Fe0 nanoparticles. High performance, superior coking and sulfur tolerance are demonstrated for L-PSFN4471 anode. We reveal that oxygen vacancy formation is the driven force for the A-site ordering of PSFN4471 and study the differences between PSFN6271 and PSFN4471 in physiochemical properties and electrochemical performance. We demonstrate that the L-PSFN4471 is a high-performance and promising SOFC alternative anode with considerable coking and sulfur poisoning resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Enhanced Lithium-Ion Storage through Anchoring Nanocrystalline MoO2/C Microspheres in rGO Nanosheets: Boosting Pseudocapacitance and Facilitating Rapid Conversion Controllable fabrication of Cu:BiVO4 nanostructures via a two-step electrodeposition strategy for efficient photoelectrochemical water splitting Highly dispersive nickel vanadium oxide nanoparticles anchored on nickel cobalt phosphate micron-sheets as cathodes for high-energy hybrid supercapacitor devices Co-vacancy induced Pt filling combines defective Co3O4 enabling electrocatalytic hydrogen evolution Olivine-type germanate phosphors doped with Ln3+ (Ln = Eu, Dy) for solid-state lighting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1