{"title":"用于固体氧化物燃料电池的优质过氧化物铁氧体阳极的氧空位诱导 A 位有序化","authors":"Peng Su, Jie Shan, Fang Wang, Yu Shen, Jingwei Li","doi":"10.1016/j.jallcom.2024.177827","DOIUrl":null,"url":null,"abstract":"Introducing pentavalent niobium stabilizes perovskite lattice of ferrites but reduces oxygen vacancy content. While oxygen vacancies are beneficial for gas adsorption, ion diffusion, and catalytic activity in perovskites, this trade-off is a challenge. Herein, by adjusting A-site rare earth/alkaline earth ratio, we synthesize ABO<sub>3</sub>-structured perovskite oxides Pr<sub>0.75</sub>Sr<sub>0.25</sub>Fe<sub>0.875</sub>Nb<sub>0.125</sub>O<sub>3-δ</sub> (PSFN6271) and Pr<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.875</sub>Nb<sub>0.125</sub>O<sub>3-δ</sub> (PSFN4471) and evaluate their electrochemical performance as anodes for solid oxide fuel cells. PSFN4471 undergoes phase transition in reducing environment, from orthorhombic simple perovskite to tetragonal A-site ordered layered perovskite PrSrFe<sub>1.75</sub>Nb<sub>0.25</sub>O<sub>6-δ</sub> (L-PSFN4471), with the exsolution of Fe<sup>0</sup> nanoparticles. High performance, superior coking and sulfur tolerance are demonstrated for L-PSFN4471 anode. We reveal that oxygen vacancy formation is the driven force for the A-site ordering of PSFN4471 and study the differences between PSFN6271 and PSFN4471 in physiochemical properties and electrochemical performance. We demonstrate that the L-PSFN4471 is a high-performance and promising SOFC alternative anode with considerable coking and sulfur poisoning resistance.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"5 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancy induced A-site ordering of a superior perovskite ferrite anode for solid oxide fuel cells\",\"authors\":\"Peng Su, Jie Shan, Fang Wang, Yu Shen, Jingwei Li\",\"doi\":\"10.1016/j.jallcom.2024.177827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introducing pentavalent niobium stabilizes perovskite lattice of ferrites but reduces oxygen vacancy content. While oxygen vacancies are beneficial for gas adsorption, ion diffusion, and catalytic activity in perovskites, this trade-off is a challenge. Herein, by adjusting A-site rare earth/alkaline earth ratio, we synthesize ABO<sub>3</sub>-structured perovskite oxides Pr<sub>0.75</sub>Sr<sub>0.25</sub>Fe<sub>0.875</sub>Nb<sub>0.125</sub>O<sub>3-δ</sub> (PSFN6271) and Pr<sub>0.5</sub>Sr<sub>0.5</sub>Fe<sub>0.875</sub>Nb<sub>0.125</sub>O<sub>3-δ</sub> (PSFN4471) and evaluate their electrochemical performance as anodes for solid oxide fuel cells. PSFN4471 undergoes phase transition in reducing environment, from orthorhombic simple perovskite to tetragonal A-site ordered layered perovskite PrSrFe<sub>1.75</sub>Nb<sub>0.25</sub>O<sub>6-δ</sub> (L-PSFN4471), with the exsolution of Fe<sup>0</sup> nanoparticles. High performance, superior coking and sulfur tolerance are demonstrated for L-PSFN4471 anode. We reveal that oxygen vacancy formation is the driven force for the A-site ordering of PSFN4471 and study the differences between PSFN6271 and PSFN4471 in physiochemical properties and electrochemical performance. We demonstrate that the L-PSFN4471 is a high-performance and promising SOFC alternative anode with considerable coking and sulfur poisoning resistance.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.177827\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177827","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
引入五价铌可稳定铁氧体的包晶晶格,但会降低氧空位含量。虽然氧空位有利于气体吸附、离子扩散和过氧化物晶中的催化活性,但这种权衡是一项挑战。在此,我们通过调整 A 位稀土/碱土的比例,合成了 ABO3 结构的包晶氧化物 Pr0.75Sr0.25Fe0.875Nb0.125O3-δ (PSFN6271)和 Pr0.5Sr0.5Fe0.875Nb0.125O3-δ (PSFN4471),并评估了它们作为固体氧化物燃料电池阳极的电化学性能。PSFN4471 在还原环境中发生了相变,从正方晶简单包晶转变为四方晶 A 位有序层状包晶 PrSrFe1.75Nb0.25O6-δ(L-PSFN4471),并伴有 Fe0 纳米颗粒的溶出。L-PSFN4471 阳极具有高性能、优异的结焦性和耐硫性。我们揭示了氧空位的形成是 PSFN4471 A 位有序化的驱动力,并研究了 PSFN6271 和 PSFN4471 在理化性质和电化学性能方面的差异。我们证明了 L-PSFN4471 是一种高性能、有前途的 SOFC 替代阳极,具有相当强的抗结焦和抗硫中毒能力。
Oxygen vacancy induced A-site ordering of a superior perovskite ferrite anode for solid oxide fuel cells
Introducing pentavalent niobium stabilizes perovskite lattice of ferrites but reduces oxygen vacancy content. While oxygen vacancies are beneficial for gas adsorption, ion diffusion, and catalytic activity in perovskites, this trade-off is a challenge. Herein, by adjusting A-site rare earth/alkaline earth ratio, we synthesize ABO3-structured perovskite oxides Pr0.75Sr0.25Fe0.875Nb0.125O3-δ (PSFN6271) and Pr0.5Sr0.5Fe0.875Nb0.125O3-δ (PSFN4471) and evaluate their electrochemical performance as anodes for solid oxide fuel cells. PSFN4471 undergoes phase transition in reducing environment, from orthorhombic simple perovskite to tetragonal A-site ordered layered perovskite PrSrFe1.75Nb0.25O6-δ (L-PSFN4471), with the exsolution of Fe0 nanoparticles. High performance, superior coking and sulfur tolerance are demonstrated for L-PSFN4471 anode. We reveal that oxygen vacancy formation is the driven force for the A-site ordering of PSFN4471 and study the differences between PSFN6271 and PSFN4471 in physiochemical properties and electrochemical performance. We demonstrate that the L-PSFN4471 is a high-performance and promising SOFC alternative anode with considerable coking and sulfur poisoning resistance.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.