WSC:众力驱动的可分解复杂任务与工人集映射框架

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Concurrency and Computation-Practice & Experience Pub Date : 2024-10-21 DOI:10.1002/cpe.8305
Suneel Kumar, Sarvesh Pandey
{"title":"WSC:众力驱动的可分解复杂任务与工人集映射框架","authors":"Suneel Kumar,&nbsp;Sarvesh Pandey","doi":"10.1002/cpe.8305","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The crowdsourcing platform serves as an intermediary managing the interaction between a requester who posts a decomposable task and a pool of workers who bid to solve it. Each worker intending to take up the task (partially or fully) decomposes it into multiple independent subtasks and submits it to the platform. Selection of a diverse set of workers (based on the bids received) to solve the decomposable task is challenging as it requires balancing factors like cost and quality while encouraging collaboration. We propose a Worker Set Computation (WSC) methodology to address these challenges by selecting a custom set of potential workers who can collaboratively complete the task with the optimal cost, in an efficient way. The aging technique is employed to dynamically update the weight of each worker, giving more weightage to the feedback received in the recent past. This, in turn, not only favors those workers who were rated well in the immediate past but also ensures that one odd feedback does not influence the overall rating heavily. We compare the performance of the proposed method against the state-of-the-art methods, considering the computational (and budget) requirements, as well as the aging-based worker rating.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 28","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WSC: A Crowd-Powered Framework for Mapping Decomposable Complex-Task With Worker-Set\",\"authors\":\"Suneel Kumar,&nbsp;Sarvesh Pandey\",\"doi\":\"10.1002/cpe.8305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The crowdsourcing platform serves as an intermediary managing the interaction between a requester who posts a decomposable task and a pool of workers who bid to solve it. Each worker intending to take up the task (partially or fully) decomposes it into multiple independent subtasks and submits it to the platform. Selection of a diverse set of workers (based on the bids received) to solve the decomposable task is challenging as it requires balancing factors like cost and quality while encouraging collaboration. We propose a Worker Set Computation (WSC) methodology to address these challenges by selecting a custom set of potential workers who can collaboratively complete the task with the optimal cost, in an efficient way. The aging technique is employed to dynamically update the weight of each worker, giving more weightage to the feedback received in the recent past. This, in turn, not only favors those workers who were rated well in the immediate past but also ensures that one odd feedback does not influence the overall rating heavily. We compare the performance of the proposed method against the state-of-the-art methods, considering the computational (and budget) requirements, as well as the aging-based worker rating.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"36 28\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8305\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8305","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

众包平台作为一个中介,管理着发布可分解任务的请求者与竞标解决该任务的工人之间的互动。每个打算承担任务(部分或全部)的工人都会将任务分解成多个独立的子任务并提交给平台。选择一组不同的工人(根据收到的出价)来解决可分解的任务具有挑战性,因为这需要在鼓励协作的同时平衡成本和质量等因素。我们提出了一种工人集计算(WSC)方法来应对这些挑战,即选择一组自定义的潜在工人,他们能以最佳成本、高效地协作完成任务。老化技术用于动态更新每个工人的权重,对近期收到的反馈给予更多权重。反过来,这不仅有利于那些在近期获得良好评价的工人,还能确保一个奇怪的反馈不会严重影响整体评价。考虑到计算(和预算)要求以及基于老化的工人评级,我们将建议方法的性能与最先进的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WSC: A Crowd-Powered Framework for Mapping Decomposable Complex-Task With Worker-Set

The crowdsourcing platform serves as an intermediary managing the interaction between a requester who posts a decomposable task and a pool of workers who bid to solve it. Each worker intending to take up the task (partially or fully) decomposes it into multiple independent subtasks and submits it to the platform. Selection of a diverse set of workers (based on the bids received) to solve the decomposable task is challenging as it requires balancing factors like cost and quality while encouraging collaboration. We propose a Worker Set Computation (WSC) methodology to address these challenges by selecting a custom set of potential workers who can collaboratively complete the task with the optimal cost, in an efficient way. The aging technique is employed to dynamically update the weight of each worker, giving more weightage to the feedback received in the recent past. This, in turn, not only favors those workers who were rated well in the immediate past but also ensures that one odd feedback does not influence the overall rating heavily. We compare the performance of the proposed method against the state-of-the-art methods, considering the computational (and budget) requirements, as well as the aging-based worker rating.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
期刊最新文献
A Dynamic Energy-Efficient Scheduling Method for Periodic Workflows Based on Collaboration of Edge-Cloud Computing Resources An Innovative Performance Assessment Method for Increasing the Efficiency of AODV Routing Protocol in VANETs Through Colored Timed Petri Nets YOLOv8-ESW: An Improved Oncomelania hupensis Detection Model Three Party Post Quantum Secure Lattice Based Construction of Authenticated Key Establishment Protocol for Mobile Communication Unstructured Text Data Security Attribute Mining Method Based on Multi-Model Collaboration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1