利用人工智能为败血症患者提供最佳抗生素选择框架

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-11-29 DOI:10.1038/s41746-024-01350-y
Philipp Wendland, Christof Schenkel-Häger, Ingobert Wenningmann, Maik Kschischo
{"title":"利用人工智能为败血症患者提供最佳抗生素选择框架","authors":"Philipp Wendland, Christof Schenkel-Häger, Ingobert Wenningmann, Maik Kschischo","doi":"10.1038/s41746-024-01350-y","DOIUrl":null,"url":null,"abstract":"In this work we present OptAB, the first completely data-driven online-updateable antibiotic selection model based on Artificial Intelligence for Sepsis patients accounting for side-effects. OptAB performs an iterative optimal antibiotic selection for real-world Sepsis patients focussing on minimizing the Sepsis-related organ failure score (SOFA-Score) as treatment success while accounting for nephrotoxicity and hepatotoxicity as serious antibiotic side-effects. OptAB provides disease progression forecasts for (combinations of) the antibiotics Vancomycin, Ceftriaxone and Piperacillin/Tazobactam and learns realistic treatment influences on the SOFA-Score and the laboratory values creatinine, bilirubin total and alanine-transaminase indicating possible side-effects. OptAB is based on a hybrid neural network differential equation algorithm and can handle the special characteristics of patient data including irregular measurements, a large amount of missing values and time-dependent confounding. OptAB’s selected optimal antibiotics exhibit faster efficacy than the administered antibiotics.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-13"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01350-y.pdf","citationCount":"0","resultStr":"{\"title\":\"An optimal antibiotic selection framework for Sepsis patients using Artificial Intelligence\",\"authors\":\"Philipp Wendland, Christof Schenkel-Häger, Ingobert Wenningmann, Maik Kschischo\",\"doi\":\"10.1038/s41746-024-01350-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present OptAB, the first completely data-driven online-updateable antibiotic selection model based on Artificial Intelligence for Sepsis patients accounting for side-effects. OptAB performs an iterative optimal antibiotic selection for real-world Sepsis patients focussing on minimizing the Sepsis-related organ failure score (SOFA-Score) as treatment success while accounting for nephrotoxicity and hepatotoxicity as serious antibiotic side-effects. OptAB provides disease progression forecasts for (combinations of) the antibiotics Vancomycin, Ceftriaxone and Piperacillin/Tazobactam and learns realistic treatment influences on the SOFA-Score and the laboratory values creatinine, bilirubin total and alanine-transaminase indicating possible side-effects. OptAB is based on a hybrid neural network differential equation algorithm and can handle the special characteristics of patient data including irregular measurements, a large amount of missing values and time-dependent confounding. OptAB’s selected optimal antibiotics exhibit faster efficacy than the administered antibiotics.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41746-024-01350-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01350-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01350-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了 OptAB,这是首个基于人工智能的完全数据驱动的在线可更新抗生素选择模型,用于败血症患者的副作用考虑。OptAB 对真实世界中的败血症患者进行迭代优化抗生素选择,重点是将败血症相关器官衰竭评分(SOFA-Score)最小化,以此作为治疗成功率,同时考虑肾毒性和肝毒性这两种严重的抗生素副作用。OptAB 可预测万古霉素、头孢曲松和哌拉西林/他唑巴坦等抗生素(组合)的疾病进展情况,并了解治疗对 SOFA-Score 以及表明可能出现副作用的肌酐、胆红素总量和丙氨酸转氨酶等实验室值的实际影响。OptAB 基于混合神经网络微分方程算法,可以处理患者数据的特殊性,包括不规则测量、大量缺失值和时间相关混杂因素。OptAB 选定的最佳抗生素比使用的抗生素疗效更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimal antibiotic selection framework for Sepsis patients using Artificial Intelligence
In this work we present OptAB, the first completely data-driven online-updateable antibiotic selection model based on Artificial Intelligence for Sepsis patients accounting for side-effects. OptAB performs an iterative optimal antibiotic selection for real-world Sepsis patients focussing on minimizing the Sepsis-related organ failure score (SOFA-Score) as treatment success while accounting for nephrotoxicity and hepatotoxicity as serious antibiotic side-effects. OptAB provides disease progression forecasts for (combinations of) the antibiotics Vancomycin, Ceftriaxone and Piperacillin/Tazobactam and learns realistic treatment influences on the SOFA-Score and the laboratory values creatinine, bilirubin total and alanine-transaminase indicating possible side-effects. OptAB is based on a hybrid neural network differential equation algorithm and can handle the special characteristics of patient data including irregular measurements, a large amount of missing values and time-dependent confounding. OptAB’s selected optimal antibiotics exhibit faster efficacy than the administered antibiotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Phenotyping people with a history of injecting drug use within electronic medical records using an interactive machine learning approach Identifying Parkinson’s disease and its stages using static standing balance Impact of human and artificial intelligence collaboration on workload reduction in medical image interpretation Establishing responsible use of AI guidelines: a comprehensive case study for healthcare institutions Natural language processing in mixed-methods evaluation of a digital sleep-alcohol intervention for young adults
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1