Philipp Wendland, Christof Schenkel-Häger, Ingobert Wenningmann, Maik Kschischo
{"title":"利用人工智能为败血症患者提供最佳抗生素选择框架","authors":"Philipp Wendland, Christof Schenkel-Häger, Ingobert Wenningmann, Maik Kschischo","doi":"10.1038/s41746-024-01350-y","DOIUrl":null,"url":null,"abstract":"In this work we present OptAB, the first completely data-driven online-updateable antibiotic selection model based on Artificial Intelligence for Sepsis patients accounting for side-effects. OptAB performs an iterative optimal antibiotic selection for real-world Sepsis patients focussing on minimizing the Sepsis-related organ failure score (SOFA-Score) as treatment success while accounting for nephrotoxicity and hepatotoxicity as serious antibiotic side-effects. OptAB provides disease progression forecasts for (combinations of) the antibiotics Vancomycin, Ceftriaxone and Piperacillin/Tazobactam and learns realistic treatment influences on the SOFA-Score and the laboratory values creatinine, bilirubin total and alanine-transaminase indicating possible side-effects. OptAB is based on a hybrid neural network differential equation algorithm and can handle the special characteristics of patient data including irregular measurements, a large amount of missing values and time-dependent confounding. OptAB’s selected optimal antibiotics exhibit faster efficacy than the administered antibiotics.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-13"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01350-y.pdf","citationCount":"0","resultStr":"{\"title\":\"An optimal antibiotic selection framework for Sepsis patients using Artificial Intelligence\",\"authors\":\"Philipp Wendland, Christof Schenkel-Häger, Ingobert Wenningmann, Maik Kschischo\",\"doi\":\"10.1038/s41746-024-01350-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present OptAB, the first completely data-driven online-updateable antibiotic selection model based on Artificial Intelligence for Sepsis patients accounting for side-effects. OptAB performs an iterative optimal antibiotic selection for real-world Sepsis patients focussing on minimizing the Sepsis-related organ failure score (SOFA-Score) as treatment success while accounting for nephrotoxicity and hepatotoxicity as serious antibiotic side-effects. OptAB provides disease progression forecasts for (combinations of) the antibiotics Vancomycin, Ceftriaxone and Piperacillin/Tazobactam and learns realistic treatment influences on the SOFA-Score and the laboratory values creatinine, bilirubin total and alanine-transaminase indicating possible side-effects. OptAB is based on a hybrid neural network differential equation algorithm and can handle the special characteristics of patient data including irregular measurements, a large amount of missing values and time-dependent confounding. OptAB’s selected optimal antibiotics exhibit faster efficacy than the administered antibiotics.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41746-024-01350-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01350-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01350-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
An optimal antibiotic selection framework for Sepsis patients using Artificial Intelligence
In this work we present OptAB, the first completely data-driven online-updateable antibiotic selection model based on Artificial Intelligence for Sepsis patients accounting for side-effects. OptAB performs an iterative optimal antibiotic selection for real-world Sepsis patients focussing on minimizing the Sepsis-related organ failure score (SOFA-Score) as treatment success while accounting for nephrotoxicity and hepatotoxicity as serious antibiotic side-effects. OptAB provides disease progression forecasts for (combinations of) the antibiotics Vancomycin, Ceftriaxone and Piperacillin/Tazobactam and learns realistic treatment influences on the SOFA-Score and the laboratory values creatinine, bilirubin total and alanine-transaminase indicating possible side-effects. OptAB is based on a hybrid neural network differential equation algorithm and can handle the special characteristics of patient data including irregular measurements, a large amount of missing values and time-dependent confounding. OptAB’s selected optimal antibiotics exhibit faster efficacy than the administered antibiotics.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.