自动动态入口微流控(ADIM)系统:经济高效的双轴纳升液滴按需生成平台及其在凝集试验中的应用。

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2024-11-28 DOI:10.1039/d4lc00643g
Abdul Basit Zia, Ian G Foulds
{"title":"自动动态入口微流控(ADIM)系统:经济高效的双轴纳升液滴按需生成平台及其在凝集试验中的应用。","authors":"Abdul Basit Zia, Ian G Foulds","doi":"10.1039/d4lc00643g","DOIUrl":null,"url":null,"abstract":"<p><p>The paper demonstrates an adaptation of a Prusa Mini+ 3D printer through the integration of 3D printed modules, creating a system capable of producing varied droplets from multiple Eppendorf tubes. Building upon our previous model, this system enhances calibration methodology enabling any fused deposition modeling (FDM) printer to produce mono-disperse droplets (coefficient of variance (CV%) <2% for train of 100 droplets) with 6900 assays per hour rate. The cost of the developed system is 85% lower than that of existing droplet generation solutions on the market, and 30% more economical than the previous iteration of the system. Additionally, the system's utility in quantification of agglutination assays is highlighted using image analysis, capable of distinguishing between agglutinated and non-agglutinated samples. By offering significant savings and ease of use, this system aims to lower the barriers to entry for microfluidic research, potentially broadening the scope of scientific exploration and application in this field.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Dynamic Inlet Microfluidics (ADIM) system: cost-effective biaxial nanoliter droplet on demand generation platform and its application in agglutination assays.\",\"authors\":\"Abdul Basit Zia, Ian G Foulds\",\"doi\":\"10.1039/d4lc00643g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paper demonstrates an adaptation of a Prusa Mini+ 3D printer through the integration of 3D printed modules, creating a system capable of producing varied droplets from multiple Eppendorf tubes. Building upon our previous model, this system enhances calibration methodology enabling any fused deposition modeling (FDM) printer to produce mono-disperse droplets (coefficient of variance (CV%) <2% for train of 100 droplets) with 6900 assays per hour rate. The cost of the developed system is 85% lower than that of existing droplet generation solutions on the market, and 30% more economical than the previous iteration of the system. Additionally, the system's utility in quantification of agglutination assays is highlighted using image analysis, capable of distinguishing between agglutinated and non-agglutinated samples. By offering significant savings and ease of use, this system aims to lower the barriers to entry for microfluidic research, potentially broadening the scope of scientific exploration and application in this field.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00643g\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00643g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了通过集成三维打印模块对 Prusa Mini+ 三维打印机进行改装,从而创建了一个能够从多个 Eppendorf 管中产生不同液滴的系统。该系统以我们以前的模型为基础,改进了校准方法,使任何熔融沉积建模(FDM)打印机都能产生单分散液滴(方差系数 (CV%)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Dynamic Inlet Microfluidics (ADIM) system: cost-effective biaxial nanoliter droplet on demand generation platform and its application in agglutination assays.

The paper demonstrates an adaptation of a Prusa Mini+ 3D printer through the integration of 3D printed modules, creating a system capable of producing varied droplets from multiple Eppendorf tubes. Building upon our previous model, this system enhances calibration methodology enabling any fused deposition modeling (FDM) printer to produce mono-disperse droplets (coefficient of variance (CV%) <2% for train of 100 droplets) with 6900 assays per hour rate. The cost of the developed system is 85% lower than that of existing droplet generation solutions on the market, and 30% more economical than the previous iteration of the system. Additionally, the system's utility in quantification of agglutination assays is highlighted using image analysis, capable of distinguishing between agglutinated and non-agglutinated samples. By offering significant savings and ease of use, this system aims to lower the barriers to entry for microfluidic research, potentially broadening the scope of scientific exploration and application in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Back cover Inside back cover Automated Dynamic Inlet Microfluidics (ADIM) system: cost-effective biaxial nanoliter droplet on demand generation platform and its application in agglutination assays. Data storage based on the absence of nucleotides using a bacteriophage abortive infection system reverse transcriptase. Stitched textile-based microfluidics for wearable devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1