Paola Redeghieri, Joël Moray, Frédéric Kerff, Sophie Gohy, Teresinha Leal, Serge Muyldermans, Rita Vanbever, Francisco Javier Morales-Yánez, Mireille Dumoulin
{"title":"单域抗体(VHH)的酶学、结构和生物物理特性分析,该抗体可选择性地严格抑制中性粒细胞弹性蛋白酶,并具有良好的可开发性。","authors":"Paola Redeghieri, Joël Moray, Frédéric Kerff, Sophie Gohy, Teresinha Leal, Serge Muyldermans, Rita Vanbever, Francisco Javier Morales-Yánez, Mireille Dumoulin","doi":"10.1002/pro.5227","DOIUrl":null,"url":null,"abstract":"<p><p>Human neutrophil elastase (hNE), a serine protease released by neutrophils during inflammation, plays a major role in the pathophysiology of several conditions especially in inflammatory lung diseases. Its inhibition constitutes, therefore, a promising therapeutic strategy to combat these diseases. In this work, we characterized the in vitro properties of a VHH (i.e., the antigen binding domain of camelid heavy chain-only antibodies), referred to as NbE201. This VHH is able to inhibit tightly, selectively and competitively both human and murine elastases with the inhibition constants (K<sub>i</sub>) of 4.1 ± 0.9 nM and 36.8 ± 3.9 nM, respectively. The IC<sub>50</sub> for the inhibition of the hydrolysis of elastin is in the same range to that of alpha-1 antitrypsin (i.e., the main endogenous inhibitor of hNE also used in the clinic) and 14 times better than that of Sivelestat (i.e., the 2nd clinically approved hNE inhibitor). The X-ray crystal structure of the NbE201-hNE complex reveals that the Complementarity Determining Regions CDR1 and CDR3 of the VHH bind into the substrate binding pocket of hNE and prevent the access to small or macromolecular substrates. They do not, however, bind deep enough into the pocket to be hydrolyzed. NbE201 is highly stable towards oxidation, deamidation, and chemical or thermal denaturation. NbE201 is therefore likely to tolerate manufacturing processes during drug development. These results highlight the high potential of NbE201 as a (pre)clinical tool to diagnose and treat diseases associated with excessive hNE activity, and for fundamental research to better understand the role of hNE in these conditions.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 12","pages":"e5227"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602439/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enzymatic, structural, and biophysical characterization of a single-domain antibody (VHH) selectively and tightly inhibiting neutrophil elastase and exhibiting favorable developability properties.\",\"authors\":\"Paola Redeghieri, Joël Moray, Frédéric Kerff, Sophie Gohy, Teresinha Leal, Serge Muyldermans, Rita Vanbever, Francisco Javier Morales-Yánez, Mireille Dumoulin\",\"doi\":\"10.1002/pro.5227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human neutrophil elastase (hNE), a serine protease released by neutrophils during inflammation, plays a major role in the pathophysiology of several conditions especially in inflammatory lung diseases. Its inhibition constitutes, therefore, a promising therapeutic strategy to combat these diseases. In this work, we characterized the in vitro properties of a VHH (i.e., the antigen binding domain of camelid heavy chain-only antibodies), referred to as NbE201. This VHH is able to inhibit tightly, selectively and competitively both human and murine elastases with the inhibition constants (K<sub>i</sub>) of 4.1 ± 0.9 nM and 36.8 ± 3.9 nM, respectively. The IC<sub>50</sub> for the inhibition of the hydrolysis of elastin is in the same range to that of alpha-1 antitrypsin (i.e., the main endogenous inhibitor of hNE also used in the clinic) and 14 times better than that of Sivelestat (i.e., the 2nd clinically approved hNE inhibitor). The X-ray crystal structure of the NbE201-hNE complex reveals that the Complementarity Determining Regions CDR1 and CDR3 of the VHH bind into the substrate binding pocket of hNE and prevent the access to small or macromolecular substrates. They do not, however, bind deep enough into the pocket to be hydrolyzed. NbE201 is highly stable towards oxidation, deamidation, and chemical or thermal denaturation. NbE201 is therefore likely to tolerate manufacturing processes during drug development. These results highlight the high potential of NbE201 as a (pre)clinical tool to diagnose and treat diseases associated with excessive hNE activity, and for fundamental research to better understand the role of hNE in these conditions.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"33 12\",\"pages\":\"e5227\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602439/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.5227\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5227","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Enzymatic, structural, and biophysical characterization of a single-domain antibody (VHH) selectively and tightly inhibiting neutrophil elastase and exhibiting favorable developability properties.
Human neutrophil elastase (hNE), a serine protease released by neutrophils during inflammation, plays a major role in the pathophysiology of several conditions especially in inflammatory lung diseases. Its inhibition constitutes, therefore, a promising therapeutic strategy to combat these diseases. In this work, we characterized the in vitro properties of a VHH (i.e., the antigen binding domain of camelid heavy chain-only antibodies), referred to as NbE201. This VHH is able to inhibit tightly, selectively and competitively both human and murine elastases with the inhibition constants (Ki) of 4.1 ± 0.9 nM and 36.8 ± 3.9 nM, respectively. The IC50 for the inhibition of the hydrolysis of elastin is in the same range to that of alpha-1 antitrypsin (i.e., the main endogenous inhibitor of hNE also used in the clinic) and 14 times better than that of Sivelestat (i.e., the 2nd clinically approved hNE inhibitor). The X-ray crystal structure of the NbE201-hNE complex reveals that the Complementarity Determining Regions CDR1 and CDR3 of the VHH bind into the substrate binding pocket of hNE and prevent the access to small or macromolecular substrates. They do not, however, bind deep enough into the pocket to be hydrolyzed. NbE201 is highly stable towards oxidation, deamidation, and chemical or thermal denaturation. NbE201 is therefore likely to tolerate manufacturing processes during drug development. These results highlight the high potential of NbE201 as a (pre)clinical tool to diagnose and treat diseases associated with excessive hNE activity, and for fundamental research to better understand the role of hNE in these conditions.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).