对 PRC2 在先天性免疫中动态功能的新认识。

IF 13.1 1区 医学 Q1 IMMUNOLOGY Trends in Immunology Pub Date : 2024-12-01 Epub Date: 2024-11-27 DOI:10.1016/j.it.2024.10.003
Rosalie W M Kempkes, Rab K Prinjha, Menno P J de Winther, Annette E Neele
{"title":"对 PRC2 在先天性免疫中动态功能的新认识。","authors":"Rosalie W M Kempkes, Rab K Prinjha, Menno P J de Winther, Annette E Neele","doi":"10.1016/j.it.2024.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties. Here, we integrate multiple immunological fields to understand PRC2 and its subunits in epigenetic canonical regulation and non-canonical mechanisms within innate immunity. We discuss how PRC2 regulates hematopoietic stem cell proliferation, myeloid cell differentiation, and shapes innate immune responses. The PRC2 catalytic domain EZH2 is upregulated in various human inflammatory diseases and its deletion or inhibition in experimental mouse models can reduce disease severity, emphasizing its importance in regulating inflammation.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"1015-1030"},"PeriodicalIF":13.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel insights into the dynamic function of PRC2 in innate immunity.\",\"authors\":\"Rosalie W M Kempkes, Rab K Prinjha, Menno P J de Winther, Annette E Neele\",\"doi\":\"10.1016/j.it.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties. Here, we integrate multiple immunological fields to understand PRC2 and its subunits in epigenetic canonical regulation and non-canonical mechanisms within innate immunity. We discuss how PRC2 regulates hematopoietic stem cell proliferation, myeloid cell differentiation, and shapes innate immune responses. The PRC2 catalytic domain EZH2 is upregulated in various human inflammatory diseases and its deletion or inhibition in experimental mouse models can reduce disease severity, emphasizing its importance in regulating inflammation.</p>\",\"PeriodicalId\":54412,\"journal\":{\"name\":\"Trends in Immunology\",\"volume\":\" \",\"pages\":\"1015-1030\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.it.2024.10.003\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.it.2024.10.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多聚核抑制复合体 2(PRC2)是癌症的一个公认治疗靶点。PRC2 催化组蛋白 H3 在赖氨酸 27 处的甲基化(H3K27me3),以维持真核细胞特性而闻名。最近的发现表明,对 PRC2 的调节不仅会影响细胞分化和肿瘤生长,还具有免疫调节特性。在这里,我们整合了多个免疫学领域,以了解 PRC2 及其亚基在先天性免疫中的表观遗传规范调控和非规范机制。我们将讨论 PRC2 如何调控造血干细胞增殖、髓系细胞分化以及影响先天性免疫反应。PRC2催化域EZH2在各种人类炎症疾病中上调,在实验小鼠模型中删除或抑制EZH2可减轻疾病的严重程度,这强调了它在调节炎症中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel insights into the dynamic function of PRC2 in innate immunity.

The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties. Here, we integrate multiple immunological fields to understand PRC2 and its subunits in epigenetic canonical regulation and non-canonical mechanisms within innate immunity. We discuss how PRC2 regulates hematopoietic stem cell proliferation, myeloid cell differentiation, and shapes innate immune responses. The PRC2 catalytic domain EZH2 is upregulated in various human inflammatory diseases and its deletion or inhibition in experimental mouse models can reduce disease severity, emphasizing its importance in regulating inflammation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Immunology
Trends in Immunology 医学-免疫学
CiteScore
25.10
自引率
0.60%
发文量
130
审稿时长
6-12 weeks
期刊介绍: Trends in Immunology serves as a vital platform for tracking advancements across various areas of immunology, offering concise reviews and hypothesis-driven viewpoints in each issue. With additional sections providing comprehensive coverage, the journal offers a holistic view of immunology. This broad perspective makes it an invaluable resource for researchers, educators, and students, facilitating the connection between basic and clinical immunology. Recognized as one of the top monthly review journals in its field, Trends in Immunology is highly regarded by the scientific community.
期刊最新文献
Macrophages boosting human skin morphogenesis. Biomolecular condensates: phasing in regulated host-pathogen interactions. Born to be wild: utilizing natural microbiota for reliable biomedical research. Epstein-Barr virus hijacks B cell metabolism to establish persistent infection and drive pathogenesis. Brain macrophages in vascular health and dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1