τ $\tau$ -Inflated Beta Regression Model for Estimating τ $\tau$ -Restricted Means and Event-Free Probabilities for Censored Time-to-Event Data.

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-11-28 DOI:10.1002/bimj.70009
Yizhuo Wang, Susan Murray
{"title":"τ $\\tau$ -Inflated Beta Regression Model for Estimating τ $\\tau$ -Restricted Means and Event-Free Probabilities for Censored Time-to-Event Data.","authors":"Yizhuo Wang,&nbsp;Susan Murray","doi":"10.1002/bimj.70009","DOIUrl":null,"url":null,"abstract":"<p>In this research, we propose analysis of <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-restricted censored time-to-event data via a <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-inflated beta regression (<span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-IBR) model. The outcome of interest is <span></span><math>\n <semantics>\n <mrow>\n <mi>min</mi>\n <mo>(</mo>\n <mi>τ</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm min}(\\tau,T)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> are the time-to-event and follow-up duration, respectively. Our analysis goals include estimation and inference related to <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-restricted mean survival time (<span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-RMST) values and event-free probabilities at <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> that address the censored nature of the data. In this setting, it is common to observe many individuals with <span></span><math>\n <semantics>\n <mrow>\n <mi>min</mi>\n <mo>(</mo>\n <mi>τ</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>τ</mi>\n </mrow>\n <annotation>${\\rm min}(\\tau,T)=\\tau$</annotation>\n </semantics></math>, a point mass that is typically overlooked in <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-restricted event-time analyses. Our proposed <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-IBR model is based on a decomposition of <span></span><math>\n <semantics>\n <mrow>\n <mi>min</mi>\n <mo>(</mo>\n <mi>τ</mi>\n <mo>,</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm min}(\\tau,T)$</annotation>\n </semantics></math> into <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n <mo>[</mo>\n <mi>I</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>≥</mo>\n <mi>τ</mi>\n <mo>)</mo>\n <mo>+</mo>\n <mo>(</mo>\n <mi>T</mi>\n <mo>/</mo>\n <mi>τ</mi>\n <mo>)</mo>\n <mi>I</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>&lt;</mo>\n <mi>τ</mi>\n <mo>)</mo>\n <mo>]</mo>\n </mrow>\n <annotation>$\\tau [I(T \\ge \\tau) +(T/\\tau) I(T &amp;lt;\\tau)]$</annotation>\n </semantics></math>. We model the mean of this latter expression using joint logistic and beta regression models that are fit using an expectation-maximization algorithm. An alternative multiple imputation (MI) algorithm for fitting the <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-IBR model has the additional advantage of producing uncensored datasets for analysis. Simulations indicate excellent performance of the <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-IBR model(s), and corresponding <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-RMST estimates, in independent and dependent censoring settings. We apply our method to the Azithromycin for Prevention of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial. In addition to <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-IBR model results providing a nuanced understanding of the treatment effect, visually appealing heatmaps of the <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-restricted event times based on our MI datasets are given, a visualization not typically available for censored time-to-event data.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70009","citationCount":"0","resultStr":"{\"title\":\"τ\\n $\\\\tau$\\n -Inflated Beta Regression Model for Estimating \\n \\n τ\\n $\\\\tau$\\n -Restricted Means and Event-Free Probabilities for Censored Time-to-Event Data\",\"authors\":\"Yizhuo Wang,&nbsp;Susan Murray\",\"doi\":\"10.1002/bimj.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this research, we propose analysis of <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-restricted censored time-to-event data via a <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-inflated beta regression (<span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-IBR) model. The outcome of interest is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>min</mi>\\n <mo>(</mo>\\n <mi>τ</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm min}(\\\\tau,T)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math> are the time-to-event and follow-up duration, respectively. Our analysis goals include estimation and inference related to <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-restricted mean survival time (<span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-RMST) values and event-free probabilities at <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math> that address the censored nature of the data. In this setting, it is common to observe many individuals with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>min</mi>\\n <mo>(</mo>\\n <mi>τ</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>τ</mi>\\n </mrow>\\n <annotation>${\\\\rm min}(\\\\tau,T)=\\\\tau$</annotation>\\n </semantics></math>, a point mass that is typically overlooked in <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-restricted event-time analyses. Our proposed <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-IBR model is based on a decomposition of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>min</mi>\\n <mo>(</mo>\\n <mi>τ</mi>\\n <mo>,</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm min}(\\\\tau,T)$</annotation>\\n </semantics></math> into <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n <mo>[</mo>\\n <mi>I</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>≥</mo>\\n <mi>τ</mi>\\n <mo>)</mo>\\n <mo>+</mo>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>/</mo>\\n <mi>τ</mi>\\n <mo>)</mo>\\n <mi>I</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>&lt;</mo>\\n <mi>τ</mi>\\n <mo>)</mo>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$\\\\tau [I(T \\\\ge \\\\tau) +(T/\\\\tau) I(T &amp;lt;\\\\tau)]$</annotation>\\n </semantics></math>. We model the mean of this latter expression using joint logistic and beta regression models that are fit using an expectation-maximization algorithm. An alternative multiple imputation (MI) algorithm for fitting the <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-IBR model has the additional advantage of producing uncensored datasets for analysis. Simulations indicate excellent performance of the <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-IBR model(s), and corresponding <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-RMST estimates, in independent and dependent censoring settings. We apply our method to the Azithromycin for Prevention of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial. In addition to <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-IBR model results providing a nuanced understanding of the treatment effect, visually appealing heatmaps of the <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-restricted event times based on our MI datasets are given, a visualization not typically available for censored time-to-event data.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70009\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出通过τ $\tau$ -膨胀贝塔回归(τ $\tau$ -IBR)模型来分析τ $\tau$ -限制删减的时间到事件数据。我们感兴趣的结果是 min ( τ , T ) ${rm min}(\tau,T)$,其中 T $T$ 和 τ $\tau$ 分别是事件发生时间和随访持续时间。我们的分析目标包括与τ $\tau$ -限制平均生存时间(τ $\tau$ -RMST)值和τ $\tau$ 处的无事件概率相关的估计和推断,以解决数据的删减性质。在这种情况下,通常会观察到许多个体的 min ( τ , T ) = τ ${rm min}(\tau,T)=\tau$,这是在 τ $\tau$ 限制的事件时间分析中通常会忽略的点质量。我们提出的 τ $\tau$ -IBR 模型基于将 min ( τ , T ) ${rm min}(\tau,T)$分解为 τ [ I ( T ≥ τ ) + ( T / τ ) I ( T τ ) ] $\tau [I(T \ge \tau) +(T/\tau) I(T <\tau)]$ 。我们使用联合逻辑和贝塔回归模型对后一个表达式的均值进行建模,并使用期望最大化算法进行拟合。用于拟合 τ $\tau$ -IBR 模型的另一种多重归因(MI)算法的另一个优点是可以生成用于分析的无删减数据集。模拟结果表明,在独立和从属删失设置中,τ $\tau$ -IBR模型和相应的τ $\tau$ -RMST估计值都具有出色的性能。我们将我们的方法应用于阿奇霉素预防慢性阻塞性肺病(COPD)恶化试验。除了τ $\tau$ -IBR模型结果提供了对治疗效果的细微理解外,我们还给出了基于我们的MI数据集的τ $\tau$ -限制事件时间的直观热图,这种可视化方式通常无法用于删减时间到事件数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
τ $\tau$ -Inflated Beta Regression Model for Estimating τ $\tau$ -Restricted Means and Event-Free Probabilities for Censored Time-to-Event Data

In this research, we propose analysis of τ $\tau$ -restricted censored time-to-event data via a τ $\tau$ -inflated beta regression ( τ $\tau$ -IBR) model. The outcome of interest is min ( τ , T ) ${\rm min}(\tau,T)$ , where T $T$ and τ $\tau$ are the time-to-event and follow-up duration, respectively. Our analysis goals include estimation and inference related to τ $\tau$ -restricted mean survival time ( τ $\tau$ -RMST) values and event-free probabilities at τ $\tau$ that address the censored nature of the data. In this setting, it is common to observe many individuals with min ( τ , T ) = τ ${\rm min}(\tau,T)=\tau$ , a point mass that is typically overlooked in τ $\tau$ -restricted event-time analyses. Our proposed τ $\tau$ -IBR model is based on a decomposition of min ( τ , T ) ${\rm min}(\tau,T)$ into τ [ I ( T τ ) + ( T / τ ) I ( T < τ ) ] $\tau [I(T \ge \tau) +(T/\tau) I(T &lt;\tau)]$ . We model the mean of this latter expression using joint logistic and beta regression models that are fit using an expectation-maximization algorithm. An alternative multiple imputation (MI) algorithm for fitting the τ $\tau$ -IBR model has the additional advantage of producing uncensored datasets for analysis. Simulations indicate excellent performance of the τ $\tau$ -IBR model(s), and corresponding τ $\tau$ -RMST estimates, in independent and dependent censoring settings. We apply our method to the Azithromycin for Prevention of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial. In addition to τ $\tau$ -IBR model results providing a nuanced understanding of the treatment effect, visually appealing heatmaps of the τ $\tau$ -restricted event times based on our MI datasets are given, a visualization not typically available for censored time-to-event data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
Survivor Average Causal Effects for Continuous Time: A Principal Stratification Approach to Causal Inference With Semicompeting Risks Wavelet-Mixed Landmark Survival Models for the Effect of Short-Term Changes of Potassium in Heart Failure Patients Issue Information: Biometrical Journal 2'25 Parametric Estimation of the Mean Number of Events in the Presence of Competing Risks Unscaled Indices for Assessing Agreement of Functional Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1