震颤评估中螺旋和直线绘图的识别分析

Attila Z Jenei, Dávid Sztahó, István Valálik
{"title":"震颤评估中螺旋和直线绘图的识别分析","authors":"Attila Z Jenei, Dávid Sztahó, István Valálik","doi":"10.1515/bmt-2023-0080","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>No standard, objective diagnostic procedure exists for most neurological diseases causing tremors. Therefore, drawing tests have been widely analyzed to support diagnostic procedures. In this study, we examine the comparison of Archimedean spiral and line drawings, the possibilities of their joint application, and the relevance of displaying pressure on the drawings to recognize Parkinsonism and cerebellar dysfunction. We further attempted to use an automatic processing and evaluation system.</p><p><strong>Methods: </strong>Digital images were developed from raw data by adding or omitting pressure data. Pre-trained (MobileNet, Xception, ResNet50) models and a Baseline (from scratch) model were applied for binary classification with a fold cross-validation procedure. Predictions were analyzed separately by drawing tasks and in combination.</p><p><strong>Results: </strong>The neurological diseases presented here can be recognized with a significantly higher macro f1 score from the spiral drawing task (up to 95.7 %) than lines (up to 84.3 %). A significant improvement can be achieved if the spiral is supplemented with line drawing. The pressure inclusion in the images did not result in significant information gain.</p><p><strong>Conclusions: </strong>The spiral drawing has a robust recognition power and can be supplemented with a line drawing task to increase the correct recognition. Moreover, X and Y coordinates appeared sufficient without pressure with this methodology.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition analysis of spiral and straight-line drawings in tremor assessment.\",\"authors\":\"Attila Z Jenei, Dávid Sztahó, István Valálik\",\"doi\":\"10.1515/bmt-2023-0080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>No standard, objective diagnostic procedure exists for most neurological diseases causing tremors. Therefore, drawing tests have been widely analyzed to support diagnostic procedures. In this study, we examine the comparison of Archimedean spiral and line drawings, the possibilities of their joint application, and the relevance of displaying pressure on the drawings to recognize Parkinsonism and cerebellar dysfunction. We further attempted to use an automatic processing and evaluation system.</p><p><strong>Methods: </strong>Digital images were developed from raw data by adding or omitting pressure data. Pre-trained (MobileNet, Xception, ResNet50) models and a Baseline (from scratch) model were applied for binary classification with a fold cross-validation procedure. Predictions were analyzed separately by drawing tasks and in combination.</p><p><strong>Results: </strong>The neurological diseases presented here can be recognized with a significantly higher macro f1 score from the spiral drawing task (up to 95.7 %) than lines (up to 84.3 %). A significant improvement can be achieved if the spiral is supplemented with line drawing. The pressure inclusion in the images did not result in significant information gain.</p><p><strong>Conclusions: </strong>The spiral drawing has a robust recognition power and can be supplemented with a line drawing task to increase the correct recognition. Moreover, X and Y coordinates appeared sufficient without pressure with this methodology.</p>\",\"PeriodicalId\":93905,\"journal\":{\"name\":\"Biomedizinische Technik. Biomedical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedizinische Technik. Biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2023-0080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2023-0080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:对于大多数导致震颤的神经系统疾病,目前还没有标准、客观的诊断程序。因此,绘画测试已被广泛分析,以支持诊断程序。在本研究中,我们研究了阿基米德螺旋图和线条图的比较、它们联合应用的可能性,以及在图纸上显示压力与识别帕金森病和小脑功能障碍的相关性。我们进一步尝试使用自动处理和评估系统:方法:通过添加或省略压力数据,从原始数据生成数字图像。采用折叠交叉验证程序对预先训练好的模型(MobileNet、Xception、ResNet50)和基线模型(从零开始)进行二元分类。预测结果按绘图任务分别进行了分析,并进行了组合分析:结果:本文介绍的神经系统疾病在螺旋绘制任务中的宏观 f1 得分(高达 95.7%)明显高于线条(高达 84.3%)。如果在螺旋绘制的基础上辅以线条绘制,效果会有明显改善。在图像中加入压力并不会带来显著的信息增益:螺旋绘制具有强大的识别能力,可以辅以线条绘制任务来提高识别正确率。此外,使用这种方法,在没有压力的情况下,X 和 Y 坐标似乎就足够了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition analysis of spiral and straight-line drawings in tremor assessment.

Objectives: No standard, objective diagnostic procedure exists for most neurological diseases causing tremors. Therefore, drawing tests have been widely analyzed to support diagnostic procedures. In this study, we examine the comparison of Archimedean spiral and line drawings, the possibilities of their joint application, and the relevance of displaying pressure on the drawings to recognize Parkinsonism and cerebellar dysfunction. We further attempted to use an automatic processing and evaluation system.

Methods: Digital images were developed from raw data by adding or omitting pressure data. Pre-trained (MobileNet, Xception, ResNet50) models and a Baseline (from scratch) model were applied for binary classification with a fold cross-validation procedure. Predictions were analyzed separately by drawing tasks and in combination.

Results: The neurological diseases presented here can be recognized with a significantly higher macro f1 score from the spiral drawing task (up to 95.7 %) than lines (up to 84.3 %). A significant improvement can be achieved if the spiral is supplemented with line drawing. The pressure inclusion in the images did not result in significant information gain.

Conclusions: The spiral drawing has a robust recognition power and can be supplemented with a line drawing task to increase the correct recognition. Moreover, X and Y coordinates appeared sufficient without pressure with this methodology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recognition analysis of spiral and straight-line drawings in tremor assessment. A type-2 fuzzy inference-based approach enables walking speed estimation that adapts to inter-individual gait patterns. Hydrogel promotes bone regeneration through various mechanisms: a review. Combination of edge enhancement and cold diffusion model for low dose CT image denoising. Prediction of muscular-invasive bladder cancer using multi-view fusion self-distillation model based on 3D T2-Weighted images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1