强Cu-O-Si界面稳定cuσ+在高效电催化乙炔半加氢中的作用

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-11-27 DOI:10.1002/aic.18663
Xiaoli Jiang, Wangxin Ge, Yu Fan, Xuedi Sheng, Hongliang Jiang, Chunzhong Li
{"title":"强Cu-O-Si界面稳定cuσ+在高效电催化乙炔半加氢中的作用","authors":"Xiaoli Jiang, Wangxin Ge, Yu Fan, Xuedi Sheng, Hongliang Jiang, Chunzhong Li","doi":"10.1002/aic.18663","DOIUrl":null,"url":null,"abstract":"The development of a high-performance electrocatalytic acetylene semi-hydrogenation catalyst is the key to the selective removal of acetylene from industrial ethylene gas and non-oil route to ethylene production. However, it is still hampered by the deactivation of the catalyst and hydrogen evolution interference. Here, we proposed an interface engineering strategy involving the Cu and cupric oxide nanoparticles dispersed on amorphous SiO<sub>2</sub> (Cu/CuO<sub><i>x</i></sub>/SiO<sub>2</sub>) by a simple stöber method. x-ray photoelectron spectroscopy demonstrated the strong interfacial interaction between cupric oxide nanoparticles and SiO<sub>2</sub>. The formed Cu-O-Si interface stabilized the Cu<sup>σ+</sup> at high reduction potentials, thus improving the activity and stability of the acetylene reduction reaction, as confirmed by in situ Raman spectroscopy. Consequently, the electrochemical test results showed that at 0.5 M KHCO<sub>3</sub>, the maximum Faraday efficiency (FE) of ethylene on the optimized Cu/CuO<sub><i>x</i></sub>/SiO<sub>2</sub> reached 96%. And ethylene FE remains above 85% at −100 mA cm<sup>−2</sup> for 40 h.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"196 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of cuσ+ via strong Cu-O-Si interface for efficient electrocatalytic acetylene semi-hydrogenation\",\"authors\":\"Xiaoli Jiang, Wangxin Ge, Yu Fan, Xuedi Sheng, Hongliang Jiang, Chunzhong Li\",\"doi\":\"10.1002/aic.18663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of a high-performance electrocatalytic acetylene semi-hydrogenation catalyst is the key to the selective removal of acetylene from industrial ethylene gas and non-oil route to ethylene production. However, it is still hampered by the deactivation of the catalyst and hydrogen evolution interference. Here, we proposed an interface engineering strategy involving the Cu and cupric oxide nanoparticles dispersed on amorphous SiO<sub>2</sub> (Cu/CuO<sub><i>x</i></sub>/SiO<sub>2</sub>) by a simple stöber method. x-ray photoelectron spectroscopy demonstrated the strong interfacial interaction between cupric oxide nanoparticles and SiO<sub>2</sub>. The formed Cu-O-Si interface stabilized the Cu<sup>σ+</sup> at high reduction potentials, thus improving the activity and stability of the acetylene reduction reaction, as confirmed by in situ Raman spectroscopy. Consequently, the electrochemical test results showed that at 0.5 M KHCO<sub>3</sub>, the maximum Faraday efficiency (FE) of ethylene on the optimized Cu/CuO<sub><i>x</i></sub>/SiO<sub>2</sub> reached 96%. And ethylene FE remains above 85% at −100 mA cm<sup>−2</sup> for 40 h.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"196 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18663\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18663","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研制高性能的电催化乙炔半加氢催化剂是实现工业乙烯气体中乙炔选择性脱除和非油制乙烯的关键。然而,催化剂失活和析氢干扰仍然阻碍了这一过程的进行。在这里,我们提出了一种界面工程策略,通过简单的stöber方法将Cu和氧化铜纳米颗粒分散在无定形SiO2 (Cu/CuOx/SiO2)上。x射线光电子能谱表明,氧化铜纳米颗粒与SiO2之间存在较强的界面相互作用。原位拉曼光谱证实,形成的Cu-O-Si界面使Cuσ+稳定在高还原电位,从而提高了乙炔还原反应的活性和稳定性。因此,电化学测试结果表明,在0.5 M KHCO3条件下,优化后的Cu/CuOx/SiO2上乙烯的最大法拉第效率(FE)达到96%。在−100 mA cm−2条件下,乙烯FE保持在85%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilization of cuσ+ via strong Cu-O-Si interface for efficient electrocatalytic acetylene semi-hydrogenation
The development of a high-performance electrocatalytic acetylene semi-hydrogenation catalyst is the key to the selective removal of acetylene from industrial ethylene gas and non-oil route to ethylene production. However, it is still hampered by the deactivation of the catalyst and hydrogen evolution interference. Here, we proposed an interface engineering strategy involving the Cu and cupric oxide nanoparticles dispersed on amorphous SiO2 (Cu/CuOx/SiO2) by a simple stöber method. x-ray photoelectron spectroscopy demonstrated the strong interfacial interaction between cupric oxide nanoparticles and SiO2. The formed Cu-O-Si interface stabilized the Cuσ+ at high reduction potentials, thus improving the activity and stability of the acetylene reduction reaction, as confirmed by in situ Raman spectroscopy. Consequently, the electrochemical test results showed that at 0.5 M KHCO3, the maximum Faraday efficiency (FE) of ethylene on the optimized Cu/CuOx/SiO2 reached 96%. And ethylene FE remains above 85% at −100 mA cm−2 for 40 h.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
New strategy for predicting liquid–liquid equilibrium near critical point using global renormalization group theory Integration of Pt/Fe-silicalite-1 and acidic zeolite as a bifunctional catalyst for boosting ethane dehydroaromatization Magnetic particle capture in high-gradient magnetic separation: A theoretical and experimental study Synergistic plasmon resonance hybridization of iron-dispersed MoO3−x/MXene for enhanced nitrogen photothermal reduction Machine learning potential model for accelerating quantum chemistry-driven property prediction and molecular design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1