面向类增量学习的潜在知识抽取网络

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-17 DOI:10.1016/j.neucom.2024.128923
Xidong Xi , Guitao Cao , Wenming Cao , Yong Liu , Yan Li , Hong Wang , He Ren
{"title":"面向类增量学习的潜在知识抽取网络","authors":"Xidong Xi ,&nbsp;Guitao Cao ,&nbsp;Wenming Cao ,&nbsp;Yong Liu ,&nbsp;Yan Li ,&nbsp;Hong Wang ,&nbsp;He Ren","doi":"10.1016/j.neucom.2024.128923","DOIUrl":null,"url":null,"abstract":"<div><div>Class-Incremental Learning (CIL) aims to dynamically learn new classes without forgetting the old ones, and it is typically achieved by extracting knowledge from old data and continuously transferring it to new tasks. In the replay-based approaches, selecting appropriate exemplars is of great importance since exemplars represent the most direct form of retaining old knowledge. In this paper, we propose a novel CIL framework: <em>Potential Knowledge Extraction Network</em> (PKENet), which addresses the issue of neglecting the knowledge of inter-sample relation in most existing works and suggests an innovative approach for exemplar selection. Specifically, to address the challenge of knowledge transfer, we design a <em>relation consistency loss</em> and a <em>hybrid cross-entropy loss</em>, where the former works by extracting structural knowledge from the old model while the latter captures graph-wise knowledge, enabling the new model to acquire more old knowledge. To enhance the anti-forgetting effect of exemplar set, we devise a <em>maximum-forgetting-priority</em> method for selecting samples most susceptible to interference from the model’s update. To overcome the prediction bias problem in CIL, we introduce the Total Direct Effect inference method into our model. Experimental results on CIFAR100, ImageNet-Full and ImageNet-Subset datasets show that multiple state-of-the-art CIL methods can be directly combined with our PKENet to reap significant performance improvement. Code: <span><span>https://github.com/XXDyeah/PKENet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128923"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential Knowledge Extraction Network for Class-Incremental Learning\",\"authors\":\"Xidong Xi ,&nbsp;Guitao Cao ,&nbsp;Wenming Cao ,&nbsp;Yong Liu ,&nbsp;Yan Li ,&nbsp;Hong Wang ,&nbsp;He Ren\",\"doi\":\"10.1016/j.neucom.2024.128923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Class-Incremental Learning (CIL) aims to dynamically learn new classes without forgetting the old ones, and it is typically achieved by extracting knowledge from old data and continuously transferring it to new tasks. In the replay-based approaches, selecting appropriate exemplars is of great importance since exemplars represent the most direct form of retaining old knowledge. In this paper, we propose a novel CIL framework: <em>Potential Knowledge Extraction Network</em> (PKENet), which addresses the issue of neglecting the knowledge of inter-sample relation in most existing works and suggests an innovative approach for exemplar selection. Specifically, to address the challenge of knowledge transfer, we design a <em>relation consistency loss</em> and a <em>hybrid cross-entropy loss</em>, where the former works by extracting structural knowledge from the old model while the latter captures graph-wise knowledge, enabling the new model to acquire more old knowledge. To enhance the anti-forgetting effect of exemplar set, we devise a <em>maximum-forgetting-priority</em> method for selecting samples most susceptible to interference from the model’s update. To overcome the prediction bias problem in CIL, we introduce the Total Direct Effect inference method into our model. Experimental results on CIFAR100, ImageNet-Full and ImageNet-Subset datasets show that multiple state-of-the-art CIL methods can be directly combined with our PKENet to reap significant performance improvement. Code: <span><span>https://github.com/XXDyeah/PKENet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"616 \",\"pages\":\"Article 128923\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016941\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016941","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

类增量学习(Class-Incremental Learning, CIL)旨在动态地学习新的类而不忘记旧的类,它通常通过从旧数据中提取知识并不断地将其转移到新的任务中来实现。在基于重播的方法中,选择合适的范例是非常重要的,因为范例代表了保留旧知识的最直接形式。在本文中,我们提出了一个新的CIL框架:潜在知识抽取网络(PKENet),它解决了大多数现有作品中忽视样本间关系知识的问题,并提出了一种创新的范例选择方法。具体来说,为了解决知识转移的挑战,我们设计了一种关系一致性损失和混合交叉熵损失,前者通过从旧模型中提取结构知识,后者通过捕获图知识,使新模型能够获取更多的旧知识。为了增强样本集的抗遗忘效果,我们设计了一种最大遗忘优先级方法来选择最容易受到模型更新干扰的样本。为了克服CIL中的预测偏差问题,我们在模型中引入了总直接效应推理方法。在CIFAR100、ImageNet-Full和imagenet -子集数据集上的实验结果表明,多种最先进的CIL方法可以直接与我们的PKENet相结合,从而获得显着的性能改进。代码:https://github.com/XXDyeah/PKENet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential Knowledge Extraction Network for Class-Incremental Learning
Class-Incremental Learning (CIL) aims to dynamically learn new classes without forgetting the old ones, and it is typically achieved by extracting knowledge from old data and continuously transferring it to new tasks. In the replay-based approaches, selecting appropriate exemplars is of great importance since exemplars represent the most direct form of retaining old knowledge. In this paper, we propose a novel CIL framework: Potential Knowledge Extraction Network (PKENet), which addresses the issue of neglecting the knowledge of inter-sample relation in most existing works and suggests an innovative approach for exemplar selection. Specifically, to address the challenge of knowledge transfer, we design a relation consistency loss and a hybrid cross-entropy loss, where the former works by extracting structural knowledge from the old model while the latter captures graph-wise knowledge, enabling the new model to acquire more old knowledge. To enhance the anti-forgetting effect of exemplar set, we devise a maximum-forgetting-priority method for selecting samples most susceptible to interference from the model’s update. To overcome the prediction bias problem in CIL, we introduce the Total Direct Effect inference method into our model. Experimental results on CIFAR100, ImageNet-Full and ImageNet-Subset datasets show that multiple state-of-the-art CIL methods can be directly combined with our PKENet to reap significant performance improvement. Code: https://github.com/XXDyeah/PKENet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Editorial Board Editorial Board A novel method for consumer preference extraction based on perceived usefulness and de-neutral sentiment Neuroadaptive control achieving zero-error tracking and designated performance—A novel vanishing damping approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1