HifiDiff:来自微小非正面面孔的面部幻觉的高保真扩散模型

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-16 DOI:10.1016/j.neucom.2024.128882
Wei Wang, Xing Wang, Yuguang Shi, Xiaobo Lu
{"title":"HifiDiff:来自微小非正面面孔的面部幻觉的高保真扩散模型","authors":"Wei Wang,&nbsp;Xing Wang,&nbsp;Yuguang Shi,&nbsp;Xiaobo Lu","doi":"10.1016/j.neucom.2024.128882","DOIUrl":null,"url":null,"abstract":"<div><div>Obtaining a high-quality frontal facial image from a low-resolution (LR) non-frontal facial image is crucial for many facial analysis tasks. Recently, diffusion models (DMs) have made impressive progress in near-frontal face super-resolution. However, when faced with non-frontal LR faces, the existing DMs exhibit poor identity preservation and facial detail fidelity. In this paper, we present a novel high-fidelity DM named HifiDiff for simultaneously super-resolving and frontalizing tiny non-frontal facial images. It consists of a two-stage pipeline: facial preview and facial refinement. In the first stage, we pretrain a coarse restoration module to obtain a coarse high-resolution (HR) frontal face, which serves as a superior constraint condition to enhance the ability to solve complex inverse transform issues. In the second stage, we leverage the strong generation capabilities of the latent DM to refine the facial details. Specifically, we design a two-pathway control structure that consists of a facial prior guidance (FPG) module and an identity consistency (IDC) module to control the denoising process. FPG encodes multilevel features derived from latent coarse HR frontal faces and employs hybrid cross-attention to capture their intrinsic correlations with the denoiser features, thereby improving the fidelity of the facial details. IDC utilizes contrastive learning to extract high-level semantic identity-representing features to constrain the denoiser, thereby maintaining the fidelity of facial identities. Extensive experiments demonstrate that our HifiDiff produces both high-fidelity and realistic HR frontal facial images, surpassing other state-of-the-art methods in qualitative and quantitative analyses, as well as in downstream facial recognition tasks.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128882"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HifiDiff: High-fidelity diffusion model for face hallucination from tiny non-frontal faces\",\"authors\":\"Wei Wang,&nbsp;Xing Wang,&nbsp;Yuguang Shi,&nbsp;Xiaobo Lu\",\"doi\":\"10.1016/j.neucom.2024.128882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Obtaining a high-quality frontal facial image from a low-resolution (LR) non-frontal facial image is crucial for many facial analysis tasks. Recently, diffusion models (DMs) have made impressive progress in near-frontal face super-resolution. However, when faced with non-frontal LR faces, the existing DMs exhibit poor identity preservation and facial detail fidelity. In this paper, we present a novel high-fidelity DM named HifiDiff for simultaneously super-resolving and frontalizing tiny non-frontal facial images. It consists of a two-stage pipeline: facial preview and facial refinement. In the first stage, we pretrain a coarse restoration module to obtain a coarse high-resolution (HR) frontal face, which serves as a superior constraint condition to enhance the ability to solve complex inverse transform issues. In the second stage, we leverage the strong generation capabilities of the latent DM to refine the facial details. Specifically, we design a two-pathway control structure that consists of a facial prior guidance (FPG) module and an identity consistency (IDC) module to control the denoising process. FPG encodes multilevel features derived from latent coarse HR frontal faces and employs hybrid cross-attention to capture their intrinsic correlations with the denoiser features, thereby improving the fidelity of the facial details. IDC utilizes contrastive learning to extract high-level semantic identity-representing features to constrain the denoiser, thereby maintaining the fidelity of facial identities. Extensive experiments demonstrate that our HifiDiff produces both high-fidelity and realistic HR frontal facial images, surpassing other state-of-the-art methods in qualitative and quantitative analyses, as well as in downstream facial recognition tasks.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"616 \",\"pages\":\"Article 128882\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016539\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016539","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

从低分辨率(LR)的非正面面部图像中获得高质量的正面面部图像对于许多面部分析任务至关重要。近年来,扩散模型(DMs)在近正面人脸超分辨率方面取得了令人瞩目的进展。然而,当面对非正面的LR面孔时,现有的dm表现出较差的身份保存和面部细节保真度。在本文中,我们提出了一种名为HifiDiff的新型高保真DM,用于同时超分辨和正面化微小的非正面面部图像。它包括两个阶段的流水线:面部预览和面部细化。在第一阶段,我们对粗复原模块进行预训练,获得粗高分辨率(HR)正面人脸,这是提高求解复杂反变换问题能力的优越约束条件。在第二阶段,我们利用潜在DM的强大生成能力来细化面部细节。具体来说,我们设计了一个由面部先验引导(FPG)模块和身份一致性(IDC)模块组成的双路径控制结构来控制去噪过程。FPG对来自潜在粗HR正面人脸的多层特征进行编码,并采用混合交叉注意捕获其与去噪特征的内在相关性,从而提高面部细节的保真度。IDC利用对比学习提取高级语义身份表征特征来约束去噪器,从而保持面部身份的保真度。大量的实验表明,我们的HifiDiff可以产生高保真度和逼真的人力资源正面面部图像,在定性和定量分析以及下游面部识别任务中超越其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HifiDiff: High-fidelity diffusion model for face hallucination from tiny non-frontal faces
Obtaining a high-quality frontal facial image from a low-resolution (LR) non-frontal facial image is crucial for many facial analysis tasks. Recently, diffusion models (DMs) have made impressive progress in near-frontal face super-resolution. However, when faced with non-frontal LR faces, the existing DMs exhibit poor identity preservation and facial detail fidelity. In this paper, we present a novel high-fidelity DM named HifiDiff for simultaneously super-resolving and frontalizing tiny non-frontal facial images. It consists of a two-stage pipeline: facial preview and facial refinement. In the first stage, we pretrain a coarse restoration module to obtain a coarse high-resolution (HR) frontal face, which serves as a superior constraint condition to enhance the ability to solve complex inverse transform issues. In the second stage, we leverage the strong generation capabilities of the latent DM to refine the facial details. Specifically, we design a two-pathway control structure that consists of a facial prior guidance (FPG) module and an identity consistency (IDC) module to control the denoising process. FPG encodes multilevel features derived from latent coarse HR frontal faces and employs hybrid cross-attention to capture their intrinsic correlations with the denoiser features, thereby improving the fidelity of the facial details. IDC utilizes contrastive learning to extract high-level semantic identity-representing features to constrain the denoiser, thereby maintaining the fidelity of facial identities. Extensive experiments demonstrate that our HifiDiff produces both high-fidelity and realistic HR frontal facial images, surpassing other state-of-the-art methods in qualitative and quantitative analyses, as well as in downstream facial recognition tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Agricultural surface water extraction in environmental remote sensing: A novel semantic segmentation model emphasizing contextual information enhancement and foreground detail attention Physics embedded neural network: Novel data-free approach towards scientific computing and applications in transfer learning View-Channel Mixer Network for Double Incomplete Multi-View Multi-Label learning Diffusion models for image super-resolution: State-of-the-art and future directions MAFNet: A Multi-scale Aligned Fusion Network for infrared small target detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1