基于快速引导的双向深度融合网络参考图像分割

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-16 DOI:10.1016/j.neucom.2024.128899
Junxian Wu , Yujia Zhang , Michael Kampffmeyer , Xiaoguang Zhao
{"title":"基于快速引导的双向深度融合网络参考图像分割","authors":"Junxian Wu ,&nbsp;Yujia Zhang ,&nbsp;Michael Kampffmeyer ,&nbsp;Xiaoguang Zhao","doi":"10.1016/j.neucom.2024.128899","DOIUrl":null,"url":null,"abstract":"<div><div>Referring image segmentation involves accurately segmenting objects based on natural language descriptions. This poses challenges due to the intricate and varied nature of language expressions, as well as the requirement to identify relevant image regions among multiple objects. Current models predominantly employ language-aware early fusion techniques, which may lead to misinterpretations of language expressions due to the lack of explicit visual guidance of the language encoder. Additionally, early fusion methods are unable to adequately leverage high-level contexts. To address these limitations, this paper introduces the Prompt-guided Bidirectional Deep Fusion Network (PBDF-Net) to enhance the fusion of language and vision modalities. In contrast to traditional unidirectional early fusion approaches, our approach employs a prompt-guided bidirectional encoder fusion (PBEF) module to promote mutual cross-modal fusion across multiple stages of the vision and language encoders. Furthermore, PBDF-Net incorporates a prompt-guided cross-modal interaction (PCI) module during the late fusion stage, facilitating a more profound integration of contextual information from both modalities, resulting in more accurate target segmentation. Comprehensive experiments conducted on the RefCOCO, RefCOCO+, G-Ref and ReferIt datasets substantiate the efficacy of our proposed method, demonstrating significant advancements in performance compared to existing approaches.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128899"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt-guided bidirectional deep fusion network for referring image segmentation\",\"authors\":\"Junxian Wu ,&nbsp;Yujia Zhang ,&nbsp;Michael Kampffmeyer ,&nbsp;Xiaoguang Zhao\",\"doi\":\"10.1016/j.neucom.2024.128899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Referring image segmentation involves accurately segmenting objects based on natural language descriptions. This poses challenges due to the intricate and varied nature of language expressions, as well as the requirement to identify relevant image regions among multiple objects. Current models predominantly employ language-aware early fusion techniques, which may lead to misinterpretations of language expressions due to the lack of explicit visual guidance of the language encoder. Additionally, early fusion methods are unable to adequately leverage high-level contexts. To address these limitations, this paper introduces the Prompt-guided Bidirectional Deep Fusion Network (PBDF-Net) to enhance the fusion of language and vision modalities. In contrast to traditional unidirectional early fusion approaches, our approach employs a prompt-guided bidirectional encoder fusion (PBEF) module to promote mutual cross-modal fusion across multiple stages of the vision and language encoders. Furthermore, PBDF-Net incorporates a prompt-guided cross-modal interaction (PCI) module during the late fusion stage, facilitating a more profound integration of contextual information from both modalities, resulting in more accurate target segmentation. Comprehensive experiments conducted on the RefCOCO, RefCOCO+, G-Ref and ReferIt datasets substantiate the efficacy of our proposed method, demonstrating significant advancements in performance compared to existing approaches.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"616 \",\"pages\":\"Article 128899\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016709\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016709","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

参考图像分割涉及到基于自然语言描述的对象的准确分割。由于语言表达的复杂性和多样性,以及在多个对象中识别相关图像区域的要求,这带来了挑战。目前的模型主要采用语言感知的早期融合技术,由于缺乏语言编码器的明确视觉指导,这可能导致对语言表达的误解。此外,早期的融合方法不能充分利用高级上下文。为了解决这些问题,本文引入了提示引导双向深度融合网络(PBDF-Net)来增强语言和视觉模式的融合。与传统的单向早期融合方法相比,我们的方法采用了一个提示引导的双向编码器融合(PBEF)模块来促进视觉和语言编码器多个阶段的相互跨模态融合。此外,PBDF-Net在后期融合阶段集成了一个快速引导的跨模态交互(PCI)模块,促进了两种模态上下文信息的更深入集成,从而实现了更准确的目标分割。在RefCOCO、RefCOCO+、G-Ref和refit数据集上进行的综合实验证实了我们提出的方法的有效性,表明与现有方法相比,我们的方法在性能上有了显著的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prompt-guided bidirectional deep fusion network for referring image segmentation
Referring image segmentation involves accurately segmenting objects based on natural language descriptions. This poses challenges due to the intricate and varied nature of language expressions, as well as the requirement to identify relevant image regions among multiple objects. Current models predominantly employ language-aware early fusion techniques, which may lead to misinterpretations of language expressions due to the lack of explicit visual guidance of the language encoder. Additionally, early fusion methods are unable to adequately leverage high-level contexts. To address these limitations, this paper introduces the Prompt-guided Bidirectional Deep Fusion Network (PBDF-Net) to enhance the fusion of language and vision modalities. In contrast to traditional unidirectional early fusion approaches, our approach employs a prompt-guided bidirectional encoder fusion (PBEF) module to promote mutual cross-modal fusion across multiple stages of the vision and language encoders. Furthermore, PBDF-Net incorporates a prompt-guided cross-modal interaction (PCI) module during the late fusion stage, facilitating a more profound integration of contextual information from both modalities, resulting in more accurate target segmentation. Comprehensive experiments conducted on the RefCOCO, RefCOCO+, G-Ref and ReferIt datasets substantiate the efficacy of our proposed method, demonstrating significant advancements in performance compared to existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Agricultural surface water extraction in environmental remote sensing: A novel semantic segmentation model emphasizing contextual information enhancement and foreground detail attention Physics embedded neural network: Novel data-free approach towards scientific computing and applications in transfer learning View-Channel Mixer Network for Double Incomplete Multi-View Multi-Label learning Diffusion models for image super-resolution: State-of-the-art and future directions Investigating the effects of recursion in convolutional layers using analytical methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1