基于循环一致性损失的多尺度优化双生成对抗网络的完全端到端脑电语音翻译

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-17 DOI:10.1016/j.neucom.2024.128916
Chen Ma , Yue Zhang , Yina Guo , Xin Liu , Hong Shangguan , Juan Wang , Luqing Zhao
{"title":"基于循环一致性损失的多尺度优化双生成对抗网络的完全端到端脑电语音翻译","authors":"Chen Ma ,&nbsp;Yue Zhang ,&nbsp;Yina Guo ,&nbsp;Xin Liu ,&nbsp;Hong Shangguan ,&nbsp;Juan Wang ,&nbsp;Luqing Zhao","doi":"10.1016/j.neucom.2024.128916","DOIUrl":null,"url":null,"abstract":"<div><div>Decoding auditory evoked electroencephalographic (EEG) signals to correlate them with speech acoustic features and construct transitional signals between different domain signals is a challenging and fascinating research topic. Brain–computer interface (BCI) technologies that incorporate auditory evoked potentials (AEPs) can not only leverage encoder–decoder architectures for signal decoding, but also employ generative adversarial networks (GANs) to translate from human neural activity to speech (T-HNAS). However, in previous research, the cascading ratio of transitional signals leads to varying degrees of information loss in the two-domain signals, and the optimal ratio of transitional signals differs across datasets, impacting the translation effectiveness. To address these issues, an improved dual generative adversarial network based on multi-scale optimization and cycle-consistency loss (MSCC-DualGAN) is proposed. We leverage the feature of cycle consistency loss, which facilitates cross-modal signal conversion, to replace transitional signals and maintain the integrity of signals in both domains during the loss computation process. Multi-scale optimization is utilized to refine the details of signals downsampled by the network, improving the similarity between features, thus enabling efficient, fully end-to-end EEG to speech translation. Furthermore, to validate the efficacy of this network, we construct a new EEG dataset and conduct studies using metrics such as mel cepstral distortion (MCD), pearson correlation coefficient (PCC), and structural similarity index measure (SSIM). Experimental results demonstrate that this new network significantly outperforms previous methods on auditory stimulus datasets.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128916"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully end-to-end EEG to speech translation using multi-scale optimized dual generative adversarial network with cycle-consistency loss\",\"authors\":\"Chen Ma ,&nbsp;Yue Zhang ,&nbsp;Yina Guo ,&nbsp;Xin Liu ,&nbsp;Hong Shangguan ,&nbsp;Juan Wang ,&nbsp;Luqing Zhao\",\"doi\":\"10.1016/j.neucom.2024.128916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Decoding auditory evoked electroencephalographic (EEG) signals to correlate them with speech acoustic features and construct transitional signals between different domain signals is a challenging and fascinating research topic. Brain–computer interface (BCI) technologies that incorporate auditory evoked potentials (AEPs) can not only leverage encoder–decoder architectures for signal decoding, but also employ generative adversarial networks (GANs) to translate from human neural activity to speech (T-HNAS). However, in previous research, the cascading ratio of transitional signals leads to varying degrees of information loss in the two-domain signals, and the optimal ratio of transitional signals differs across datasets, impacting the translation effectiveness. To address these issues, an improved dual generative adversarial network based on multi-scale optimization and cycle-consistency loss (MSCC-DualGAN) is proposed. We leverage the feature of cycle consistency loss, which facilitates cross-modal signal conversion, to replace transitional signals and maintain the integrity of signals in both domains during the loss computation process. Multi-scale optimization is utilized to refine the details of signals downsampled by the network, improving the similarity between features, thus enabling efficient, fully end-to-end EEG to speech translation. Furthermore, to validate the efficacy of this network, we construct a new EEG dataset and conduct studies using metrics such as mel cepstral distortion (MCD), pearson correlation coefficient (PCC), and structural similarity index measure (SSIM). Experimental results demonstrate that this new network significantly outperforms previous methods on auditory stimulus datasets.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"616 \",\"pages\":\"Article 128916\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016874\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016874","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对听诱发脑电图信号进行解码,使其与语音声学特征相关联,并在不同域信号之间构建过渡信号是一个具有挑战性和吸引力的研究课题。结合听觉诱发电位(AEPs)的脑机接口(BCI)技术不仅可以利用编码器-解码器架构进行信号解码,还可以使用生成对抗网络(gan)将人类神经活动转化为语音(T-HNAS)。然而,在以往的研究中,过渡信号的级联比例导致了二域信号中不同程度的信息损失,并且不同数据集的过渡信号的最佳比例不同,影响了翻译的有效性。为了解决这些问题,提出了一种改进的基于多尺度优化和循环一致性损失的双生成对抗网络(MSCC-DualGAN)。在损失计算过程中,我们利用周期一致性损失的特性来替换过渡信号,并保持两个域信号的完整性。利用多尺度优化对网络下采样的信号细节进行细化,提高特征之间的相似性,从而实现高效、完全端到端脑电到语音的翻译。此外,为了验证该网络的有效性,我们构建了一个新的EEG数据集,并使用mel - cepstral distortion (MCD)、pearson correlation coefficient (PCC)和structural similarity index measure (SSIM)等指标进行了研究。实验结果表明,该网络在听觉刺激数据集上显著优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully end-to-end EEG to speech translation using multi-scale optimized dual generative adversarial network with cycle-consistency loss
Decoding auditory evoked electroencephalographic (EEG) signals to correlate them with speech acoustic features and construct transitional signals between different domain signals is a challenging and fascinating research topic. Brain–computer interface (BCI) technologies that incorporate auditory evoked potentials (AEPs) can not only leverage encoder–decoder architectures for signal decoding, but also employ generative adversarial networks (GANs) to translate from human neural activity to speech (T-HNAS). However, in previous research, the cascading ratio of transitional signals leads to varying degrees of information loss in the two-domain signals, and the optimal ratio of transitional signals differs across datasets, impacting the translation effectiveness. To address these issues, an improved dual generative adversarial network based on multi-scale optimization and cycle-consistency loss (MSCC-DualGAN) is proposed. We leverage the feature of cycle consistency loss, which facilitates cross-modal signal conversion, to replace transitional signals and maintain the integrity of signals in both domains during the loss computation process. Multi-scale optimization is utilized to refine the details of signals downsampled by the network, improving the similarity between features, thus enabling efficient, fully end-to-end EEG to speech translation. Furthermore, to validate the efficacy of this network, we construct a new EEG dataset and conduct studies using metrics such as mel cepstral distortion (MCD), pearson correlation coefficient (PCC), and structural similarity index measure (SSIM). Experimental results demonstrate that this new network significantly outperforms previous methods on auditory stimulus datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Editorial Board Editorial Board A novel method for consumer preference extraction based on perceived usefulness and de-neutral sentiment Neuroadaptive control achieving zero-error tracking and designated performance—A novel vanishing damping approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1