CCR1拮抗剂作为脊髓损伤中炎症、自噬和凋亡标志物的潜在调节剂

IF 4.6 2区 医学 Q1 NEUROSCIENCES Neuropharmacology Pub Date : 2024-11-26 DOI:10.1016/j.neuropharm.2024.110239
Ahmed Hasan , Alberto Repici , Anna Paola Capra , Deborah Mannino , Valentina Bova , Antonio Catalfamo , Michela Campolo , Irene Paterniti , Emanuela Esposito , Alessio Ardizzone
{"title":"CCR1拮抗剂作为脊髓损伤中炎症、自噬和凋亡标志物的潜在调节剂","authors":"Ahmed Hasan ,&nbsp;Alberto Repici ,&nbsp;Anna Paola Capra ,&nbsp;Deborah Mannino ,&nbsp;Valentina Bova ,&nbsp;Antonio Catalfamo ,&nbsp;Michela Campolo ,&nbsp;Irene Paterniti ,&nbsp;Emanuela Esposito ,&nbsp;Alessio Ardizzone","doi":"10.1016/j.neuropharm.2024.110239","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord injury (SCI) leads to severe and lasting impairments in motor and sensory functions. The intense inflammatory response following SCI is a significant challenge, and autophagy has emerged as a key factor in the recovery process. The C-C chemokine receptor type 1 (CCR1), a G-protein coupled receptor, plays a crucial role in managing the chemokine response under stress. BX471, a selective and potent CCR1 antagonist, has been explored in various disease contexts for its therapeutic potential. In this study, we assessed the effects of BX471 in a mouse model of SCI. The treatment was administered at doses of 3 and 10 mg/kg, 1 h and 6 h after the injury occurred. Results showed that BX471 significantly improved tissue structure by positively influencing autophagy and reducing inflammation. Inflammatory markers, including CCR1 ligands RANTES, MIP-1α, TNF-α, and IL-1β, were measured using Western blot analysis. Additionally, histological evaluations revealed that BX471 effectively decreased infiltration and reduced astrocyte and microglial activation, supporting the idea that enhancing autophagy through CCR1 inhibition could promote neuronal survival. The highest efficacy was observed at the 10 mg/kg dose, leading to optimal out-comes across the assessments. These findings suggest that CCR1 blockade with BX471 may offer a promising therapeutic strategy for SCI, addressing a critical gap in the current pharmacological treatment options.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"264 ","pages":"Article 110239"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCR1 antagonist as a potential modulator of inflammatory, autophagic, and apoptotic markers in spinal cord injury\",\"authors\":\"Ahmed Hasan ,&nbsp;Alberto Repici ,&nbsp;Anna Paola Capra ,&nbsp;Deborah Mannino ,&nbsp;Valentina Bova ,&nbsp;Antonio Catalfamo ,&nbsp;Michela Campolo ,&nbsp;Irene Paterniti ,&nbsp;Emanuela Esposito ,&nbsp;Alessio Ardizzone\",\"doi\":\"10.1016/j.neuropharm.2024.110239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spinal cord injury (SCI) leads to severe and lasting impairments in motor and sensory functions. The intense inflammatory response following SCI is a significant challenge, and autophagy has emerged as a key factor in the recovery process. The C-C chemokine receptor type 1 (CCR1), a G-protein coupled receptor, plays a crucial role in managing the chemokine response under stress. BX471, a selective and potent CCR1 antagonist, has been explored in various disease contexts for its therapeutic potential. In this study, we assessed the effects of BX471 in a mouse model of SCI. The treatment was administered at doses of 3 and 10 mg/kg, 1 h and 6 h after the injury occurred. Results showed that BX471 significantly improved tissue structure by positively influencing autophagy and reducing inflammation. Inflammatory markers, including CCR1 ligands RANTES, MIP-1α, TNF-α, and IL-1β, were measured using Western blot analysis. Additionally, histological evaluations revealed that BX471 effectively decreased infiltration and reduced astrocyte and microglial activation, supporting the idea that enhancing autophagy through CCR1 inhibition could promote neuronal survival. The highest efficacy was observed at the 10 mg/kg dose, leading to optimal out-comes across the assessments. These findings suggest that CCR1 blockade with BX471 may offer a promising therapeutic strategy for SCI, addressing a critical gap in the current pharmacological treatment options.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"264 \",\"pages\":\"Article 110239\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390824004088\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824004088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)导致运动和感觉功能严重和持久的损伤。脊髓损伤后的强烈炎症反应是一个重大挑战,自噬已成为恢复过程中的关键因素。C-C趋化因子受体1型(CCR1)是一种g蛋白偶联受体,在管理应激下的趋化因子反应中起着至关重要的作用。BX471是一种选择性和有效的CCR1拮抗剂,已在各种疾病背景下探索其治疗潜力。在本研究中,我们评估了BX471在脊髓损伤小鼠模型中的作用。在损伤发生后1 h和6 h分别给药3和10 mg/kg。结果表明,BX471通过积极影响自噬和减少炎症,显著改善组织结构。采用Western blot方法检测炎症标志物,包括CCR1配体RANTES、MIP-1α、TNF-α和IL-1β。此外,组织学评价显示BX471能有效减少浸润,降低星形胶质细胞和小胶质细胞的激活,支持通过抑制CCR1增强自噬可促进神经元存活的观点。在10mg /kg剂量下观察到最高的疗效,在评估中导致最佳结果。这些发现表明,用BX471阻断CCR1可能为脊髓损伤提供一种有希望的治疗策略,解决了当前药物治疗选择中的一个关键空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CCR1 antagonist as a potential modulator of inflammatory, autophagic, and apoptotic markers in spinal cord injury
Spinal cord injury (SCI) leads to severe and lasting impairments in motor and sensory functions. The intense inflammatory response following SCI is a significant challenge, and autophagy has emerged as a key factor in the recovery process. The C-C chemokine receptor type 1 (CCR1), a G-protein coupled receptor, plays a crucial role in managing the chemokine response under stress. BX471, a selective and potent CCR1 antagonist, has been explored in various disease contexts for its therapeutic potential. In this study, we assessed the effects of BX471 in a mouse model of SCI. The treatment was administered at doses of 3 and 10 mg/kg, 1 h and 6 h after the injury occurred. Results showed that BX471 significantly improved tissue structure by positively influencing autophagy and reducing inflammation. Inflammatory markers, including CCR1 ligands RANTES, MIP-1α, TNF-α, and IL-1β, were measured using Western blot analysis. Additionally, histological evaluations revealed that BX471 effectively decreased infiltration and reduced astrocyte and microglial activation, supporting the idea that enhancing autophagy through CCR1 inhibition could promote neuronal survival. The highest efficacy was observed at the 10 mg/kg dose, leading to optimal out-comes across the assessments. These findings suggest that CCR1 blockade with BX471 may offer a promising therapeutic strategy for SCI, addressing a critical gap in the current pharmacological treatment options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
期刊最新文献
Effects of genetic knockdown of the serotonin transporter on established L-DOPA-induced dyskinesia and gene expression in hemiparkinsonian rats. Heat shock proteins in chronic pain: From molecular chaperones to pain modulators. Acute kappa opioid receptor blocking disrupts the pro-cognitive effect of cannabidiol in neuropathic rats. Efficacy and safety of evenamide, a glutamate modulator, added to a second-generation antipsychotic in inadequately/poorly responding patients with chronic schizophrenia: Results from a randomized, double-blind, placebo-controlled, phase 3, international clinical trial. Toluene is a cerebral artery constrictor acting via BK channels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1