鱼肌原纤维蛋白基薄膜的制备、表征和增强策略:综述

IF 8.5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Packaging and Shelf Life Pub Date : 2024-12-01 DOI:10.1016/j.fpsl.2024.101397
Faming Yang , Wenhui Xue , Jian Wang , Xiangwen Chen , Chenxue Zhang , Hao Wu , Qiancheng Qi , Junxiang Zhu
{"title":"鱼肌原纤维蛋白基薄膜的制备、表征和增强策略:综述","authors":"Faming Yang ,&nbsp;Wenhui Xue ,&nbsp;Jian Wang ,&nbsp;Xiangwen Chen ,&nbsp;Chenxue Zhang ,&nbsp;Hao Wu ,&nbsp;Qiancheng Qi ,&nbsp;Junxiang Zhu","doi":"10.1016/j.fpsl.2024.101397","DOIUrl":null,"url":null,"abstract":"<div><div>This review evaluates fish myofibrillar proteins (FMPs) as a sustainable alternative to petroleum-derived synthetic plastics for biodegradable packaging materials. Sourced from various fish species, FMPs are noted for their excellent film-forming abilities, essential for food packaging. The review covers the composition, structure, and properties of FMPs, highlighting their use in producing bioactive, mechanically robust, and eco-friendly films. It explores film preparation methods like casting and laminated techniques, and examines the various properties of FMP films, discussing modification strategies to enhance mechanical strength, barrier properties, thermal stability, and overall functionality. Key techniques such as cross-linking, nanomaterial reinforcement, and bioactive compound integration are explored to address the limitations in packaging properties of FMP films. The review also highlights the introduction of phenolic extracts, essential oil, nano-metal oxides, and anthocyaninin to FMP films, which imparts antimicrobial and smart responsive features, thereby prolonging the shelf life of packaged food products. The review also outlines challenges and provides an in-depth analysis of technological advancements and future research directions in biodegradable packaging. This exploration underscores the potential of FMPs as an important complement to traditional plastics and highlights critical areas of innovation needed for their full application in sustainable packaging. Continued research and development are emphasized to fully harness FMPs' potential as viable, eco-friendly packaging alternatives.</div></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"46 ","pages":"Article 101397"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication, characterization, and enhancement strategies of fish myofibrillar protein-based films: A comprehensive review\",\"authors\":\"Faming Yang ,&nbsp;Wenhui Xue ,&nbsp;Jian Wang ,&nbsp;Xiangwen Chen ,&nbsp;Chenxue Zhang ,&nbsp;Hao Wu ,&nbsp;Qiancheng Qi ,&nbsp;Junxiang Zhu\",\"doi\":\"10.1016/j.fpsl.2024.101397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review evaluates fish myofibrillar proteins (FMPs) as a sustainable alternative to petroleum-derived synthetic plastics for biodegradable packaging materials. Sourced from various fish species, FMPs are noted for their excellent film-forming abilities, essential for food packaging. The review covers the composition, structure, and properties of FMPs, highlighting their use in producing bioactive, mechanically robust, and eco-friendly films. It explores film preparation methods like casting and laminated techniques, and examines the various properties of FMP films, discussing modification strategies to enhance mechanical strength, barrier properties, thermal stability, and overall functionality. Key techniques such as cross-linking, nanomaterial reinforcement, and bioactive compound integration are explored to address the limitations in packaging properties of FMP films. The review also highlights the introduction of phenolic extracts, essential oil, nano-metal oxides, and anthocyaninin to FMP films, which imparts antimicrobial and smart responsive features, thereby prolonging the shelf life of packaged food products. The review also outlines challenges and provides an in-depth analysis of technological advancements and future research directions in biodegradable packaging. This exploration underscores the potential of FMPs as an important complement to traditional plastics and highlights critical areas of innovation needed for their full application in sustainable packaging. Continued research and development are emphasized to fully harness FMPs' potential as viable, eco-friendly packaging alternatives.</div></div>\",\"PeriodicalId\":12377,\"journal\":{\"name\":\"Food Packaging and Shelf Life\",\"volume\":\"46 \",\"pages\":\"Article 101397\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Packaging and Shelf Life\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214289424001625\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424001625","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文评价了鱼类肌原纤维蛋白(FMPs)作为石油衍生合成塑料的可降解包装材料的可持续替代品。fmp来源于各种鱼类,以其优异的成膜能力而闻名,这对食品包装至关重要。本文综述了fmp的组成、结构和性能,重点介绍了它们在生产生物活性、机械坚固和环保薄膜方面的应用。它探讨了薄膜的制备方法,如铸造和层压技术,并检查了FMP薄膜的各种性能,讨论了提高机械强度、阻隔性能、热稳定性和整体功能的改性策略。探讨了交联、纳米材料增强和生物活性化合物整合等关键技术,以解决FMP薄膜包装性能的局限性。该综述还强调了在FMP薄膜中引入酚类提取物、精油、纳米金属氧化物和花青素,这赋予了抗菌和智能响应特性,从而延长了包装食品的保质期。该评论还概述了挑战,并提供了生物可降解包装的技术进步和未来研究方向的深入分析。这一探索强调了fmp作为传统塑料的重要补充的潜力,并强调了其在可持续包装中充分应用所需的关键创新领域。持续的研究和开发强调充分利用fmp作为可行的,环保的包装替代品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication, characterization, and enhancement strategies of fish myofibrillar protein-based films: A comprehensive review
This review evaluates fish myofibrillar proteins (FMPs) as a sustainable alternative to petroleum-derived synthetic plastics for biodegradable packaging materials. Sourced from various fish species, FMPs are noted for their excellent film-forming abilities, essential for food packaging. The review covers the composition, structure, and properties of FMPs, highlighting their use in producing bioactive, mechanically robust, and eco-friendly films. It explores film preparation methods like casting and laminated techniques, and examines the various properties of FMP films, discussing modification strategies to enhance mechanical strength, barrier properties, thermal stability, and overall functionality. Key techniques such as cross-linking, nanomaterial reinforcement, and bioactive compound integration are explored to address the limitations in packaging properties of FMP films. The review also highlights the introduction of phenolic extracts, essential oil, nano-metal oxides, and anthocyaninin to FMP films, which imparts antimicrobial and smart responsive features, thereby prolonging the shelf life of packaged food products. The review also outlines challenges and provides an in-depth analysis of technological advancements and future research directions in biodegradable packaging. This exploration underscores the potential of FMPs as an important complement to traditional plastics and highlights critical areas of innovation needed for their full application in sustainable packaging. Continued research and development are emphasized to fully harness FMPs' potential as viable, eco-friendly packaging alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Packaging and Shelf Life
Food Packaging and Shelf Life Agricultural and Biological Sciences-Food Science
CiteScore
14.00
自引率
8.80%
发文量
214
审稿时长
70 days
期刊介绍: Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.
期刊最新文献
An intelligent chitosan/polyvinyl alcohol film with two types of anthocyanins for improved color recognition accuracy and monitoring fresh-cut pineapple freshness Fabrication of 3D-printed thyme and cinnamon essential oils in γ-cyclodextrin encapsulates/sodium alginate-methylcellulose antimicrobial films with a core-shell structure Effects of different essential oil nanoemulsions co-stabilized by two emulsifiers on the structure and properties of chitosan active films pH-sensitive intelligent packaging films from Kodo millet (Paspalum scrobiculatum) starch and gum tragacanth incorporated with beetroot peel extract for monitoring shrimp freshness A sprayable and rapidly cross-linked hydrogel membrane for fruit preservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1