基于变换的时间序列预测深度学习架构

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-11-01 DOI:10.1016/j.simpa.2024.100716
G.H. Harish Nayak , Md Wasi Alam , G. Avinash , Rajeev Ranjan Kumar , Mrinmoy Ray , Samir Barman , K.N. Singh , B. Samuel Naik , Nurnabi Meherul Alam , Prasenjit Pal , Santosha Rathod , Jaiprakash Bisen
{"title":"基于变换的时间序列预测深度学习架构","authors":"G.H. Harish Nayak ,&nbsp;Md Wasi Alam ,&nbsp;G. Avinash ,&nbsp;Rajeev Ranjan Kumar ,&nbsp;Mrinmoy Ray ,&nbsp;Samir Barman ,&nbsp;K.N. Singh ,&nbsp;B. Samuel Naik ,&nbsp;Nurnabi Meherul Alam ,&nbsp;Prasenjit Pal ,&nbsp;Santosha Rathod ,&nbsp;Jaiprakash Bisen","doi":"10.1016/j.simpa.2024.100716","DOIUrl":null,"url":null,"abstract":"<div><div>Time series forecasting faces challenges due to the non-stationarity, nonlinearity, and chaotic nature of the data. Traditional deep learning models like RNNs, LSTMs, and GRUs process data sequentially but are inefficient for long sequences. To overcome the limitations of these models, we proposed a transformer-based deep learning architecture utilizing an attention mechanism for parallel processing, enhancing prediction accuracy and efficiency. This paper presents user-friendly code for the implementation of the proposed transformer-based deep learning architecture utilizing an attention mechanism for parallel processing.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"22 ","pages":"Article 100716"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer-based deep learning architecture for time series forecasting\",\"authors\":\"G.H. Harish Nayak ,&nbsp;Md Wasi Alam ,&nbsp;G. Avinash ,&nbsp;Rajeev Ranjan Kumar ,&nbsp;Mrinmoy Ray ,&nbsp;Samir Barman ,&nbsp;K.N. Singh ,&nbsp;B. Samuel Naik ,&nbsp;Nurnabi Meherul Alam ,&nbsp;Prasenjit Pal ,&nbsp;Santosha Rathod ,&nbsp;Jaiprakash Bisen\",\"doi\":\"10.1016/j.simpa.2024.100716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Time series forecasting faces challenges due to the non-stationarity, nonlinearity, and chaotic nature of the data. Traditional deep learning models like RNNs, LSTMs, and GRUs process data sequentially but are inefficient for long sequences. To overcome the limitations of these models, we proposed a transformer-based deep learning architecture utilizing an attention mechanism for parallel processing, enhancing prediction accuracy and efficiency. This paper presents user-friendly code for the implementation of the proposed transformer-based deep learning architecture utilizing an attention mechanism for parallel processing.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"22 \",\"pages\":\"Article 100716\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824001040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824001040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

时间序列预测由于数据的非平稳性、非线性和混沌性而面临挑战。传统的深度学习模型,如rnn、lstm和gru,按顺序处理数据,但对于长序列来说效率低下。为了克服这些模型的局限性,我们提出了一种基于转换器的深度学习架构,利用注意力机制进行并行处理,提高预测精度和效率。本文提供了用户友好的代码,用于实现所提出的基于转换器的深度学习架构,该架构利用注意机制进行并行处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformer-based deep learning architecture for time series forecasting
Time series forecasting faces challenges due to the non-stationarity, nonlinearity, and chaotic nature of the data. Traditional deep learning models like RNNs, LSTMs, and GRUs process data sequentially but are inefficient for long sequences. To overcome the limitations of these models, we proposed a transformer-based deep learning architecture utilizing an attention mechanism for parallel processing, enhancing prediction accuracy and efficiency. This paper presents user-friendly code for the implementation of the proposed transformer-based deep learning architecture utilizing an attention mechanism for parallel processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
mGFD: CloudGenerator SlabCutOpt: A code for ornamental stone slab cut optimization LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond EnhancedBERT: A python software tailored for arabic word sense disambiguation PostgreSQL: Relational database structures application on capacitated lot-sizing for pharmaceutical tablets manufacturing processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1