带有模式检测信息的马尔可夫跳变神经网络的动态事件触发输出反馈同步

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-26 DOI:10.1016/j.neucom.2024.128872
Cheng Fan , Ling Jin , Lei Su , Xihong Fei
{"title":"带有模式检测信息的马尔可夫跳变神经网络的动态事件触发输出反馈同步","authors":"Cheng Fan ,&nbsp;Ling Jin ,&nbsp;Lei Su ,&nbsp;Xihong Fei","doi":"10.1016/j.neucom.2024.128872","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the synchronization control problem of discrete-time Markov jump neural networks. Because of the possible mismatch of controller mode information and the difficulty in obtaining neuron information in practical environments, a hidden Markov model is introduced, which contains a partially unknown detection probability matrix and a partially unknown transition probability matrix. To overcome the unpredictability of the system state and enhance the effective utilization of communication resources, a static output feedback controller based on a dynamic event triggering strategy is designed. Moreover, the conservatism of theoretical derivation is further reduced through the activation function division. Finally, numerical examples are used to verify the reliability of the above results, which are then applied to image encryption.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128872"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic event triggering output feedback synchronization for Markov jump neural networks with mode detection information\",\"authors\":\"Cheng Fan ,&nbsp;Ling Jin ,&nbsp;Lei Su ,&nbsp;Xihong Fei\",\"doi\":\"10.1016/j.neucom.2024.128872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article investigates the synchronization control problem of discrete-time Markov jump neural networks. Because of the possible mismatch of controller mode information and the difficulty in obtaining neuron information in practical environments, a hidden Markov model is introduced, which contains a partially unknown detection probability matrix and a partially unknown transition probability matrix. To overcome the unpredictability of the system state and enhance the effective utilization of communication resources, a static output feedback controller based on a dynamic event triggering strategy is designed. Moreover, the conservatism of theoretical derivation is further reduced through the activation function division. Finally, numerical examples are used to verify the reliability of the above results, which are then applied to image encryption.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"617 \",\"pages\":\"Article 128872\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016436\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016436","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究离散马尔可夫跳神经网络的同步控制问题。针对实际环境中控制器模式信息可能不匹配和神经元信息难以获取的问题,引入了包含部分未知检测概率矩阵和部分未知转移概率矩阵的隐马尔可夫模型。为了克服系统状态的不可预测性,提高通信资源的有效利用率,设计了一种基于动态事件触发策略的静态输出反馈控制器。通过激活函数划分,进一步降低了理论推导的保守性。最后,通过数值算例验证了上述结果的可靠性,并将其应用于图像加密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic event triggering output feedback synchronization for Markov jump neural networks with mode detection information
This article investigates the synchronization control problem of discrete-time Markov jump neural networks. Because of the possible mismatch of controller mode information and the difficulty in obtaining neuron information in practical environments, a hidden Markov model is introduced, which contains a partially unknown detection probability matrix and a partially unknown transition probability matrix. To overcome the unpredictability of the system state and enhance the effective utilization of communication resources, a static output feedback controller based on a dynamic event triggering strategy is designed. Moreover, the conservatism of theoretical derivation is further reduced through the activation function division. Finally, numerical examples are used to verify the reliability of the above results, which are then applied to image encryption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Monocular thermal SLAM with neural radiance fields for 3D scene reconstruction Learning a more compact representation for low-rank tensor completion An HVS-derived network for assessing the quality of camouflaged targets with feature fusion Global Span Semantic Dependency Awareness and Filtering Network for nested named entity recognition A user behavior-aware multi-task learning model for enhanced short video recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1