基于在线运动推理的sam辅助时间位置增强变压器分割目标跟踪

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-23 DOI:10.1016/j.neucom.2024.128914
Huanlong Zhang , Xiangbo Yang , Xin Wang , Weiqiang Fu , Bineng Zhong , Jianwei Zhang
{"title":"基于在线运动推理的sam辅助时间位置增强变压器分割目标跟踪","authors":"Huanlong Zhang ,&nbsp;Xiangbo Yang ,&nbsp;Xin Wang ,&nbsp;Weiqiang Fu ,&nbsp;Bineng Zhong ,&nbsp;Jianwei Zhang","doi":"10.1016/j.neucom.2024.128914","DOIUrl":null,"url":null,"abstract":"<div><div>Current transformer-based trackers typically represent targets using bounding boxes. However, bounding boxes do not accurately describe the target and uncontrollably contain most background pixels. This paper proposes a Segment Anything Model (SAM)-Assisted Temporal-Location Enhanced Transformer Segmentation for Object Tracking with Online Motion Inference. First, a novel transformer-based temporal-location enhanced segmentation method is proposed. The target temporal features are clustered into foreground–background tokens utilizing a mask to capture discriminative information distribution. Then, the suitable positional prompts are learned in the proposed mask prediction head to establish the mapping between target features and localization, which enhances the specific foreground weights for precise mask generation. Second, a temporal-based motion inference module is proposed. It fully utilizes the target temporal state to construct an online displacement model inferring motion relationships of the target between frames and providing robust position prompts for the segmentation process. We also introduce SAM for initial mask generation. Precise pixel-level object tracking is achieved by combining segmentation and localization within a unified process. Experimental results demonstrate that the proposed method yields competitive performance compared to existing approaches.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128914"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAM-Assisted Temporal-Location Enhanced Transformer Segmentation for Object Tracking with Online Motion Inference\",\"authors\":\"Huanlong Zhang ,&nbsp;Xiangbo Yang ,&nbsp;Xin Wang ,&nbsp;Weiqiang Fu ,&nbsp;Bineng Zhong ,&nbsp;Jianwei Zhang\",\"doi\":\"10.1016/j.neucom.2024.128914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Current transformer-based trackers typically represent targets using bounding boxes. However, bounding boxes do not accurately describe the target and uncontrollably contain most background pixels. This paper proposes a Segment Anything Model (SAM)-Assisted Temporal-Location Enhanced Transformer Segmentation for Object Tracking with Online Motion Inference. First, a novel transformer-based temporal-location enhanced segmentation method is proposed. The target temporal features are clustered into foreground–background tokens utilizing a mask to capture discriminative information distribution. Then, the suitable positional prompts are learned in the proposed mask prediction head to establish the mapping between target features and localization, which enhances the specific foreground weights for precise mask generation. Second, a temporal-based motion inference module is proposed. It fully utilizes the target temporal state to construct an online displacement model inferring motion relationships of the target between frames and providing robust position prompts for the segmentation process. We also introduce SAM for initial mask generation. Precise pixel-level object tracking is achieved by combining segmentation and localization within a unified process. Experimental results demonstrate that the proposed method yields competitive performance compared to existing approaches.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"617 \",\"pages\":\"Article 128914\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016850\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016850","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于电流互感器的跟踪器通常使用边界框表示目标。然而,边界框不能准确地描述目标,并且不受控制地包含大多数背景像素。提出了一种基于分段任意模型(SAM)辅助的时间位置增强变压器分割方法,用于在线运动推理的目标跟踪。首先,提出了一种新的基于变压器的时间位置增强分割方法。目标时间特征聚类到前景-背景令牌利用掩码捕获判别信息分布。然后,在提出的掩码预测头部中学习合适的位置提示,建立目标特征与定位之间的映射关系,增强特定前景权重,实现精确的掩码生成。其次,提出了一种基于时间的运动推理模块。它充分利用目标的时间状态,构建在线位移模型,推断目标在帧间的运动关系,并为分割过程提供鲁棒的位置提示。我们还引入了用于初始掩码生成的SAM。在统一的过程中,将分割和定位相结合,实现精确的像素级目标跟踪。实验结果表明,与现有方法相比,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAM-Assisted Temporal-Location Enhanced Transformer Segmentation for Object Tracking with Online Motion Inference
Current transformer-based trackers typically represent targets using bounding boxes. However, bounding boxes do not accurately describe the target and uncontrollably contain most background pixels. This paper proposes a Segment Anything Model (SAM)-Assisted Temporal-Location Enhanced Transformer Segmentation for Object Tracking with Online Motion Inference. First, a novel transformer-based temporal-location enhanced segmentation method is proposed. The target temporal features are clustered into foreground–background tokens utilizing a mask to capture discriminative information distribution. Then, the suitable positional prompts are learned in the proposed mask prediction head to establish the mapping between target features and localization, which enhances the specific foreground weights for precise mask generation. Second, a temporal-based motion inference module is proposed. It fully utilizes the target temporal state to construct an online displacement model inferring motion relationships of the target between frames and providing robust position prompts for the segmentation process. We also introduce SAM for initial mask generation. Precise pixel-level object tracking is achieved by combining segmentation and localization within a unified process. Experimental results demonstrate that the proposed method yields competitive performance compared to existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Agricultural surface water extraction in environmental remote sensing: A novel semantic segmentation model emphasizing contextual information enhancement and foreground detail attention Physics embedded neural network: Novel data-free approach towards scientific computing and applications in transfer learning View-Channel Mixer Network for Double Incomplete Multi-View Multi-Label learning Diffusion models for image super-resolution: State-of-the-art and future directions Investigating the effects of recursion in convolutional layers using analytical methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1