识别局部有用信息用于属性图异常检测

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-18 DOI:10.1016/j.neucom.2024.128900
Penghui Xi , Debo Cheng , Guangquan Lu , Zhenyun Deng , Guixian Zhang , Shichao Zhang
{"title":"识别局部有用信息用于属性图异常检测","authors":"Penghui Xi ,&nbsp;Debo Cheng ,&nbsp;Guangquan Lu ,&nbsp;Zhenyun Deng ,&nbsp;Guixian Zhang ,&nbsp;Shichao Zhang","doi":"10.1016/j.neucom.2024.128900","DOIUrl":null,"url":null,"abstract":"<div><div>Graph anomaly detection primarily relies on shallow learning methods based on feature engineering and deep learning strategies centred on autoencoder-based reconstruction. However, these methods frequently fail to harness the local attributes and structural information within graph data, making it challenging to capture the underlying distribution in scenarios with class-imbalanced graph anomalies, which can result in overfitting. To deal with the above issue, this paper proposes a new anomaly detection method called LIAD (Identifying <u>L</u>ocal Useful <u>I</u>nformation for <u>A</u>ttribute Graph Anomaly <u>D</u>etection), which learns the data’s underlying distribution and captures richer local information. First, LIAD employs data augmentation techniques to create masked graphs and pairs of positive and negative subgraphs. Then, LIAD leverages contrastive learning to derive rich embedding representations from diverse local structural information. Additionally, LIAD utilizes a variational autoencoder (VAE) to generate new graph data, capturing the neighbourhood distribution within the masked graph. During the training process, LIAD aligns the generated graph data with the original to deepen its comprehension of local information. Finally, anomaly scoring is achieved by comparing the discrimination and reconstruction scores of the contrastive pairs, enabling effective anomaly detection. Extensive experiments on five real-world datasets demonstrate the effectiveness of LIAD compared to state-of-the-art methods. Comprehensive ablation studies and parametric analyses further affirm the robustness and efficacy of our model.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128900"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying local useful information for attribute graph anomaly detection\",\"authors\":\"Penghui Xi ,&nbsp;Debo Cheng ,&nbsp;Guangquan Lu ,&nbsp;Zhenyun Deng ,&nbsp;Guixian Zhang ,&nbsp;Shichao Zhang\",\"doi\":\"10.1016/j.neucom.2024.128900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graph anomaly detection primarily relies on shallow learning methods based on feature engineering and deep learning strategies centred on autoencoder-based reconstruction. However, these methods frequently fail to harness the local attributes and structural information within graph data, making it challenging to capture the underlying distribution in scenarios with class-imbalanced graph anomalies, which can result in overfitting. To deal with the above issue, this paper proposes a new anomaly detection method called LIAD (Identifying <u>L</u>ocal Useful <u>I</u>nformation for <u>A</u>ttribute Graph Anomaly <u>D</u>etection), which learns the data’s underlying distribution and captures richer local information. First, LIAD employs data augmentation techniques to create masked graphs and pairs of positive and negative subgraphs. Then, LIAD leverages contrastive learning to derive rich embedding representations from diverse local structural information. Additionally, LIAD utilizes a variational autoencoder (VAE) to generate new graph data, capturing the neighbourhood distribution within the masked graph. During the training process, LIAD aligns the generated graph data with the original to deepen its comprehension of local information. Finally, anomaly scoring is achieved by comparing the discrimination and reconstruction scores of the contrastive pairs, enabling effective anomaly detection. Extensive experiments on five real-world datasets demonstrate the effectiveness of LIAD compared to state-of-the-art methods. Comprehensive ablation studies and parametric analyses further affirm the robustness and efficacy of our model.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"617 \",\"pages\":\"Article 128900\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016710\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016710","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图异常检测主要依赖于基于特征工程的浅学习方法和基于自编码器重建的深度学习策略。然而,这些方法经常不能利用图数据中的局部属性和结构信息,使得在类不平衡的图异常场景中捕捉底层分布变得困难,这可能导致过拟合。针对上述问题,本文提出了一种新的异常检测方法LIAD (identification Local Useful Information for Attribute Graph anomaly detection),该方法学习数据的底层分布,捕获更丰富的局部信息。首先,LIAD使用数据增强技术来创建掩码图和正负子图对。然后,LIAD利用对比学习从不同的局部结构信息中获得丰富的嵌入表示。此外,LIAD利用变分自编码器(VAE)生成新的图数据,捕获掩码图内的邻域分布。在训练过程中,LIAD将生成的图数据与原始图数据对齐,以加深对局部信息的理解。最后,通过对比对的判别分数和重建分数进行异常评分,实现有效的异常检测。在五个真实世界数据集上进行的大量实验表明,与最先进的方法相比,LIAD的有效性。综合消融研究和参数分析进一步证实了我们模型的稳健性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying local useful information for attribute graph anomaly detection
Graph anomaly detection primarily relies on shallow learning methods based on feature engineering and deep learning strategies centred on autoencoder-based reconstruction. However, these methods frequently fail to harness the local attributes and structural information within graph data, making it challenging to capture the underlying distribution in scenarios with class-imbalanced graph anomalies, which can result in overfitting. To deal with the above issue, this paper proposes a new anomaly detection method called LIAD (Identifying Local Useful Information for Attribute Graph Anomaly Detection), which learns the data’s underlying distribution and captures richer local information. First, LIAD employs data augmentation techniques to create masked graphs and pairs of positive and negative subgraphs. Then, LIAD leverages contrastive learning to derive rich embedding representations from diverse local structural information. Additionally, LIAD utilizes a variational autoencoder (VAE) to generate new graph data, capturing the neighbourhood distribution within the masked graph. During the training process, LIAD aligns the generated graph data with the original to deepen its comprehension of local information. Finally, anomaly scoring is achieved by comparing the discrimination and reconstruction scores of the contrastive pairs, enabling effective anomaly detection. Extensive experiments on five real-world datasets demonstrate the effectiveness of LIAD compared to state-of-the-art methods. Comprehensive ablation studies and parametric analyses further affirm the robustness and efficacy of our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Monocular thermal SLAM with neural radiance fields for 3D scene reconstruction Learning a more compact representation for low-rank tensor completion An HVS-derived network for assessing the quality of camouflaged targets with feature fusion Global Span Semantic Dependency Awareness and Filtering Network for nested named entity recognition A user behavior-aware multi-task learning model for enhanced short video recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1