基于解纠缠表示学习和跨模态-上下文关联挖掘的多模态情感分析

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-24 DOI:10.1016/j.neucom.2024.128940
Zuhe Li , Panbo Liu , Yushan Pan , Weiping Ding , Jun Yu , Haoran Chen , Weihua Liu , Yiming Luo , Hao Wang
{"title":"基于解纠缠表示学习和跨模态-上下文关联挖掘的多模态情感分析","authors":"Zuhe Li ,&nbsp;Panbo Liu ,&nbsp;Yushan Pan ,&nbsp;Weiping Ding ,&nbsp;Jun Yu ,&nbsp;Haoran Chen ,&nbsp;Weihua Liu ,&nbsp;Yiming Luo ,&nbsp;Hao Wang","doi":"10.1016/j.neucom.2024.128940","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal sentiment analysis aims to extract sentiment information expressed by users from multimodal data, including linguistic, acoustic, and visual cues. However, the heterogeneity of multimodal data leads to disparities in modal distribution, thereby impacting the model’s ability to effectively integrate complementarity and redundancy across modalities. Additionally, existing approaches often merge modalities directly after obtaining their representations, overlooking potential emotional correlations between them. To tackle these challenges, we propose a Multiview Collaborative Perception (MVCP) framework for multimodal sentiment analysis. This framework consists primarily of two modules: Multimodal Disentangled Representation Learning (MDRL) and Cross-Modal Context Association Mining (CMCAM). The MDRL module employs a joint learning layer comprising a common encoder and an exclusive encoder. This layer maps multimodal data to a hypersphere, learning common and exclusive representations for each modality, thus mitigating the semantic gap arising from modal heterogeneity. To further bridge semantic gaps and capture complex inter-modal correlations, the CMCAM module utilizes multiple attention mechanisms to mine cross-modal and contextual sentiment associations, yielding joint representations with rich multimodal semantic interactions. In this stage, the CMCAM module only discovers the correlation information among the common representations in order to maintain the exclusive representations of different modalities. Finally, a multitask learning framework is adopted to achieve parameter sharing between single-modal tasks and improve sentiment prediction performance. Experimental results on the MOSI and MOSEI datasets demonstrate the effectiveness of the proposed method.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128940"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal sentiment analysis based on disentangled representation learning and cross-modal-context association mining\",\"authors\":\"Zuhe Li ,&nbsp;Panbo Liu ,&nbsp;Yushan Pan ,&nbsp;Weiping Ding ,&nbsp;Jun Yu ,&nbsp;Haoran Chen ,&nbsp;Weihua Liu ,&nbsp;Yiming Luo ,&nbsp;Hao Wang\",\"doi\":\"10.1016/j.neucom.2024.128940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multimodal sentiment analysis aims to extract sentiment information expressed by users from multimodal data, including linguistic, acoustic, and visual cues. However, the heterogeneity of multimodal data leads to disparities in modal distribution, thereby impacting the model’s ability to effectively integrate complementarity and redundancy across modalities. Additionally, existing approaches often merge modalities directly after obtaining their representations, overlooking potential emotional correlations between them. To tackle these challenges, we propose a Multiview Collaborative Perception (MVCP) framework for multimodal sentiment analysis. This framework consists primarily of two modules: Multimodal Disentangled Representation Learning (MDRL) and Cross-Modal Context Association Mining (CMCAM). The MDRL module employs a joint learning layer comprising a common encoder and an exclusive encoder. This layer maps multimodal data to a hypersphere, learning common and exclusive representations for each modality, thus mitigating the semantic gap arising from modal heterogeneity. To further bridge semantic gaps and capture complex inter-modal correlations, the CMCAM module utilizes multiple attention mechanisms to mine cross-modal and contextual sentiment associations, yielding joint representations with rich multimodal semantic interactions. In this stage, the CMCAM module only discovers the correlation information among the common representations in order to maintain the exclusive representations of different modalities. Finally, a multitask learning framework is adopted to achieve parameter sharing between single-modal tasks and improve sentiment prediction performance. Experimental results on the MOSI and MOSEI datasets demonstrate the effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"617 \",\"pages\":\"Article 128940\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224017119\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017119","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多模态情感分析旨在从多模态数据中提取用户表达的情感信息,包括语言、声学和视觉线索。然而,多模态数据的异质性导致了模态分布的差异,从而影响了模型有效整合多模态互补性和冗余性的能力。此外,现有的方法通常在获得表征后直接合并模式,忽略了它们之间潜在的情感相关性。为了解决这些挑战,我们提出了一个多视图协同感知(MVCP)框架,用于多模态情感分析。该框架主要由两个模块组成:多模态解纠缠表示学习(MDRL)和跨模态上下文关联挖掘(CMCAM)。MDRL模块采用一个联合学习层,包括一个通用编码器和一个专用编码器。这一层将多模态数据映射到一个超球体,学习每个模态的通用和专有表示,从而减轻由模态异构引起的语义差距。为了进一步弥合语义差距并捕获复杂的多模态相关性,CMCAM模块利用多种注意机制来挖掘跨模态和上下文情感关联,产生具有丰富多模态语义交互的联合表示。在此阶段,CMCAM模块仅发现共同表示之间的相关信息,以保持不同模态的独占表示。最后,采用多任务学习框架实现单模态任务间参数共享,提高情绪预测性能。在MOSI和MOSEI数据集上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal sentiment analysis based on disentangled representation learning and cross-modal-context association mining
Multimodal sentiment analysis aims to extract sentiment information expressed by users from multimodal data, including linguistic, acoustic, and visual cues. However, the heterogeneity of multimodal data leads to disparities in modal distribution, thereby impacting the model’s ability to effectively integrate complementarity and redundancy across modalities. Additionally, existing approaches often merge modalities directly after obtaining their representations, overlooking potential emotional correlations between them. To tackle these challenges, we propose a Multiview Collaborative Perception (MVCP) framework for multimodal sentiment analysis. This framework consists primarily of two modules: Multimodal Disentangled Representation Learning (MDRL) and Cross-Modal Context Association Mining (CMCAM). The MDRL module employs a joint learning layer comprising a common encoder and an exclusive encoder. This layer maps multimodal data to a hypersphere, learning common and exclusive representations for each modality, thus mitigating the semantic gap arising from modal heterogeneity. To further bridge semantic gaps and capture complex inter-modal correlations, the CMCAM module utilizes multiple attention mechanisms to mine cross-modal and contextual sentiment associations, yielding joint representations with rich multimodal semantic interactions. In this stage, the CMCAM module only discovers the correlation information among the common representations in order to maintain the exclusive representations of different modalities. Finally, a multitask learning framework is adopted to achieve parameter sharing between single-modal tasks and improve sentiment prediction performance. Experimental results on the MOSI and MOSEI datasets demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Agricultural surface water extraction in environmental remote sensing: A novel semantic segmentation model emphasizing contextual information enhancement and foreground detail attention Physics embedded neural network: Novel data-free approach towards scientific computing and applications in transfer learning View-Channel Mixer Network for Double Incomplete Multi-View Multi-Label learning Diffusion models for image super-resolution: State-of-the-art and future directions Investigating the effects of recursion in convolutional layers using analytical methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1