利用残差网络和相关滤波器增强卫星图像分辨率

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-11-22 DOI:10.1016/j.chemolab.2024.105277
Ajay Sharma , Bhavana P. Shrivastava , Praveen Kumar Tyagi , Ebtasam Ahmad Siddiqui , Rahul Prasad , Swati Gautam , Pranshu Pranjal
{"title":"利用残差网络和相关滤波器增强卫星图像分辨率","authors":"Ajay Sharma ,&nbsp;Bhavana P. Shrivastava ,&nbsp;Praveen Kumar Tyagi ,&nbsp;Ebtasam Ahmad Siddiqui ,&nbsp;Rahul Prasad ,&nbsp;Swati Gautam ,&nbsp;Pranshu Pranjal","doi":"10.1016/j.chemolab.2024.105277","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the predominant challenge of very low-resolution satellite images in remote sensing applications, a common issue in satellite image-based surveillance. Existing satellite image recognition algorithms struggle with such low-resolution images, and traditional Super-Resolution (SR) techniques fall short for very low-resolution cases. We propose the Progressive Satellite Image Super-Resolution (PSISR) model to bridge this gap. Unlike current learning-based SR methods, the PSISR model specifically targets very low-resolution satellite images. In satellite image super-resolution, problems with feature fusion that result in image noise, blind spots, poor perceptual quality, and checkboard artifacts are encountered during the reconstruction process. Current models try to improve perceptual quality, but they frequently show challenges in attaining acceptable outcomes because of losses during reconstruction. Using a combined loss function, correlation filters, and a loss-aware upscaling network layer, the PSISR model presents a revolutionary methodology. The model adopts a cascading structure with dense skip connections, sequentially upscaling images by factors of <span><math><mrow><mn>2</mn><mo>×</mo></mrow></math></span>, <span><math><mrow><mn>4</mn><mo>×</mo></mrow></math></span>, and <span><math><mrow><mn>8</mn><mo>×</mo></mrow></math></span> through three modules. To validate the model's superiority, a study is conducted, confirming its effectiveness compared to baseline models and also training the other models using the available dataset to prove the effectiveness of the model. The PSISR model effectively addresses the challenge of extracting more features with minimal losses, resulting in high magnification during reconstruction. Our method outperforms state-of-the-art techniques, including Swin2-MoSE, MambaFormer, SRFBN and RCAN, with a PSNR improvement of up to 0.4 dB and a 0.003 SSIM enhancement across various datasets. This demonstrates the effectiveness of our approach in producing high-quality outputs, achieving a 99.25 % correlation efficiency between the generated and original images.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"256 ","pages":"Article 105277"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced satellite image resolution with a residual network and correlation filter\",\"authors\":\"Ajay Sharma ,&nbsp;Bhavana P. Shrivastava ,&nbsp;Praveen Kumar Tyagi ,&nbsp;Ebtasam Ahmad Siddiqui ,&nbsp;Rahul Prasad ,&nbsp;Swati Gautam ,&nbsp;Pranshu Pranjal\",\"doi\":\"10.1016/j.chemolab.2024.105277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the predominant challenge of very low-resolution satellite images in remote sensing applications, a common issue in satellite image-based surveillance. Existing satellite image recognition algorithms struggle with such low-resolution images, and traditional Super-Resolution (SR) techniques fall short for very low-resolution cases. We propose the Progressive Satellite Image Super-Resolution (PSISR) model to bridge this gap. Unlike current learning-based SR methods, the PSISR model specifically targets very low-resolution satellite images. In satellite image super-resolution, problems with feature fusion that result in image noise, blind spots, poor perceptual quality, and checkboard artifacts are encountered during the reconstruction process. Current models try to improve perceptual quality, but they frequently show challenges in attaining acceptable outcomes because of losses during reconstruction. Using a combined loss function, correlation filters, and a loss-aware upscaling network layer, the PSISR model presents a revolutionary methodology. The model adopts a cascading structure with dense skip connections, sequentially upscaling images by factors of <span><math><mrow><mn>2</mn><mo>×</mo></mrow></math></span>, <span><math><mrow><mn>4</mn><mo>×</mo></mrow></math></span>, and <span><math><mrow><mn>8</mn><mo>×</mo></mrow></math></span> through three modules. To validate the model's superiority, a study is conducted, confirming its effectiveness compared to baseline models and also training the other models using the available dataset to prove the effectiveness of the model. The PSISR model effectively addresses the challenge of extracting more features with minimal losses, resulting in high magnification during reconstruction. Our method outperforms state-of-the-art techniques, including Swin2-MoSE, MambaFormer, SRFBN and RCAN, with a PSNR improvement of up to 0.4 dB and a 0.003 SSIM enhancement across various datasets. This demonstrates the effectiveness of our approach in producing high-quality outputs, achieving a 99.25 % correlation efficiency between the generated and original images.</div></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"256 \",\"pages\":\"Article 105277\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016974392400217X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392400217X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究解决了遥感应用中极低分辨率卫星图像的主要挑战,这是基于卫星图像的监视中的一个常见问题。现有的卫星图像识别算法难以识别这种低分辨率图像,而传统的超分辨率(SR)技术在非常低分辨率的情况下表现不佳。我们提出了渐进式卫星图像超分辨率(PSISR)模型来弥补这一差距。与目前基于学习的SR方法不同,PSISR模型专门针对非常低分辨率的卫星图像。在卫星图像超分辨率重建过程中,会遇到特征融合导致图像噪声、盲点、感知质量差、棋盘伪影等问题。目前的模型试图提高感知质量,但由于重建过程中的损失,它们在获得可接受的结果方面经常表现出挑战。使用组合损失函数,相关滤波器和损失感知的升级网络层,PSISR模型提出了一种革命性的方法。该模型采用密集跳跃连接的级联结构,通过三个模块依次将图像以2倍、4倍、8倍的倍数进行提升。为了验证模型的优越性,我们进行了一项研究,确认了其与基线模型的有效性,并使用可用的数据集训练其他模型来证明模型的有效性。PSISR模型有效地解决了以最小损失提取更多特征的挑战,从而在重建过程中实现了高放大。我们的方法优于最先进的技术,包括Swin2-MoSE, MambaFormer, SRFBN和RCAN,在各种数据集上的PSNR提高了0.4 dB, SSIM提高了0.003。这证明了我们的方法在产生高质量输出方面的有效性,在生成的图像和原始图像之间实现了99.25%的相关效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced satellite image resolution with a residual network and correlation filter
This study addresses the predominant challenge of very low-resolution satellite images in remote sensing applications, a common issue in satellite image-based surveillance. Existing satellite image recognition algorithms struggle with such low-resolution images, and traditional Super-Resolution (SR) techniques fall short for very low-resolution cases. We propose the Progressive Satellite Image Super-Resolution (PSISR) model to bridge this gap. Unlike current learning-based SR methods, the PSISR model specifically targets very low-resolution satellite images. In satellite image super-resolution, problems with feature fusion that result in image noise, blind spots, poor perceptual quality, and checkboard artifacts are encountered during the reconstruction process. Current models try to improve perceptual quality, but they frequently show challenges in attaining acceptable outcomes because of losses during reconstruction. Using a combined loss function, correlation filters, and a loss-aware upscaling network layer, the PSISR model presents a revolutionary methodology. The model adopts a cascading structure with dense skip connections, sequentially upscaling images by factors of 2×, 4×, and 8× through three modules. To validate the model's superiority, a study is conducted, confirming its effectiveness compared to baseline models and also training the other models using the available dataset to prove the effectiveness of the model. The PSISR model effectively addresses the challenge of extracting more features with minimal losses, resulting in high magnification during reconstruction. Our method outperforms state-of-the-art techniques, including Swin2-MoSE, MambaFormer, SRFBN and RCAN, with a PSNR improvement of up to 0.4 dB and a 0.003 SSIM enhancement across various datasets. This demonstrates the effectiveness of our approach in producing high-quality outputs, achieving a 99.25 % correlation efficiency between the generated and original images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
Optimising thermal performance of water-based hybrid nanofluids with magnetic and radiative effects over a spinning disc Design of Poly(lactic-co-glycolic acid) nanoparticles in drug delivery by artificial intelligence methods to find the conditions of nanoparticles synthesis Automatic spectral fitting for LIBS and Raman spectra by boosted deconvolution method Editorial Board Reconstructing spectral shapes with GAN models: A data-driven approach for high-resolution spectra from low-resolution spectrometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1