伊朗上空大气CO2柱浓度:排放、GOSAT卫星观测和WRF-GHG模式模拟

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Research Pub Date : 2024-11-23 DOI:10.1016/j.atmosres.2024.107818
Samira Karbasi , Amir Hossein Abdi , Hossein Malakooti , Jose Antonio Garcia Orza
{"title":"伊朗上空大气CO2柱浓度:排放、GOSAT卫星观测和WRF-GHG模式模拟","authors":"Samira Karbasi ,&nbsp;Amir Hossein Abdi ,&nbsp;Hossein Malakooti ,&nbsp;Jose Antonio Garcia Orza","doi":"10.1016/j.atmosres.2024.107818","DOIUrl":null,"url":null,"abstract":"<div><div>Regarding global warming and climate change, carbon dioxide (CO<sub>2</sub>) is one of the most important greenhouse gases. Simulating CO<sub>2</sub> gas at hourly/weekly time intervals and desired vertical resolution is challenging due to the coarse horizontal resolution of global models. In this study, both column-averaged CO<sub>2</sub> mixing ratio (XCO<sub>2</sub>) and vertical cross sections of CO<sub>2</sub> mixing ratio were simulated by the Weather Research and Forecast Green House gas (WRF-GHG) model at spatial resolutions of 30 and 10 km for the Middle East region as the first domain, and Iran as the second domain. Simulations consider the primary CO<sub>2</sub> sources (anthropogenic, biogenic, fire, and oceanic) and the Copernicus Atmosphere Monitoring Service (CAMS) dataset. XCO<sub>2</sub> retrieved from GOSAT satellite observations was employed to evaluate the simulation results of the column-averaged CO<sub>2</sub> concentrations in February and August 2010. The evaluations showed that the spatiotemporal variability of meteorological variables was well simulated by WRF-GHG with correlation coefficients r of 0.86–0.92, 0.67–0.75, and 0.76–0.82 for temperature, wind, and relative humidity, respectively, during February and August 2010. The evaluations also indicated that the WRF-GHG simulations outperformed the global model TM3, with mean bias error values of − 0.79 and 0.45 PPMV for WRF-GHG in February and August, respectively. The percentage contribution of net CO<sub>2</sub> emissions from human activities in Iran was calculated as (38.33 % and 23.70 %) of the total emissions, respectively, with values of 4.4 and 0.85 kg/km<sup>2</sup> in each month. The net emissions contributions of biogenic, fire, and oceanic sources were evaluated in February and August, with biogenic emissions contributing (31.901 % and 27.66 %), biogenic absorption contributing (24.07 % and 46.63 %), fire emissions contributing (5.7 % and 2.064 %), and oceanic emissions contributing (3.23 × 10<sup>−6</sup> % and 2.23 × 10<sup>−6</sup> %). Large-scale circulations and biogenic activity are responsible for the major features of the spatial and seasonal distribution of CO<sub>2</sub> in the area. In February, column mixing ratios are higher in more northern latitudes; in August, they are higher to the south. Furthermore, the simulated vertical cross sections show high CO<sub>2</sub> mixing ratios in the mid-lower troposphere and northerly/northeasterly advection in February; the vertical profile is inverted in August with high concentrations in the lower stratosphere associated with southwesterly advection. However, the interaction between the synoptic and sub-synoptic features with the topography determines the precise dispersion and distribution of CO<sub>2</sub>. Despite the negligible emissions in central and eastern Iran, these factors play an important role in the observed concentrations in February and August. In August, the areas between the 120-day low-level monsoon flow of Sistan in eastern Iran, and the westerlies over western/southwestern Iran and the Zagros Mountain range, interact with the heat-low in the Iranian plains and with the Arabian subtropical high. In February, the dominant winds in western Asia were west winds, with the main source of pollution coming from the northeastern regions flowing towards central and eastern Iran. The equatorward displacement of the polar jet stream and the passage of low-pressure systems from the west in winter cause a temporary reduction in CO<sub>2</sub> concentrations.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"314 ","pages":"Article 107818"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atmospheric CO2 column concentration over Iran: Emissions, GOSAT satellite observations, and WRF-GHG model simulations\",\"authors\":\"Samira Karbasi ,&nbsp;Amir Hossein Abdi ,&nbsp;Hossein Malakooti ,&nbsp;Jose Antonio Garcia Orza\",\"doi\":\"10.1016/j.atmosres.2024.107818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Regarding global warming and climate change, carbon dioxide (CO<sub>2</sub>) is one of the most important greenhouse gases. Simulating CO<sub>2</sub> gas at hourly/weekly time intervals and desired vertical resolution is challenging due to the coarse horizontal resolution of global models. In this study, both column-averaged CO<sub>2</sub> mixing ratio (XCO<sub>2</sub>) and vertical cross sections of CO<sub>2</sub> mixing ratio were simulated by the Weather Research and Forecast Green House gas (WRF-GHG) model at spatial resolutions of 30 and 10 km for the Middle East region as the first domain, and Iran as the second domain. Simulations consider the primary CO<sub>2</sub> sources (anthropogenic, biogenic, fire, and oceanic) and the Copernicus Atmosphere Monitoring Service (CAMS) dataset. XCO<sub>2</sub> retrieved from GOSAT satellite observations was employed to evaluate the simulation results of the column-averaged CO<sub>2</sub> concentrations in February and August 2010. The evaluations showed that the spatiotemporal variability of meteorological variables was well simulated by WRF-GHG with correlation coefficients r of 0.86–0.92, 0.67–0.75, and 0.76–0.82 for temperature, wind, and relative humidity, respectively, during February and August 2010. The evaluations also indicated that the WRF-GHG simulations outperformed the global model TM3, with mean bias error values of − 0.79 and 0.45 PPMV for WRF-GHG in February and August, respectively. The percentage contribution of net CO<sub>2</sub> emissions from human activities in Iran was calculated as (38.33 % and 23.70 %) of the total emissions, respectively, with values of 4.4 and 0.85 kg/km<sup>2</sup> in each month. The net emissions contributions of biogenic, fire, and oceanic sources were evaluated in February and August, with biogenic emissions contributing (31.901 % and 27.66 %), biogenic absorption contributing (24.07 % and 46.63 %), fire emissions contributing (5.7 % and 2.064 %), and oceanic emissions contributing (3.23 × 10<sup>−6</sup> % and 2.23 × 10<sup>−6</sup> %). Large-scale circulations and biogenic activity are responsible for the major features of the spatial and seasonal distribution of CO<sub>2</sub> in the area. In February, column mixing ratios are higher in more northern latitudes; in August, they are higher to the south. Furthermore, the simulated vertical cross sections show high CO<sub>2</sub> mixing ratios in the mid-lower troposphere and northerly/northeasterly advection in February; the vertical profile is inverted in August with high concentrations in the lower stratosphere associated with southwesterly advection. However, the interaction between the synoptic and sub-synoptic features with the topography determines the precise dispersion and distribution of CO<sub>2</sub>. Despite the negligible emissions in central and eastern Iran, these factors play an important role in the observed concentrations in February and August. In August, the areas between the 120-day low-level monsoon flow of Sistan in eastern Iran, and the westerlies over western/southwestern Iran and the Zagros Mountain range, interact with the heat-low in the Iranian plains and with the Arabian subtropical high. In February, the dominant winds in western Asia were west winds, with the main source of pollution coming from the northeastern regions flowing towards central and eastern Iran. The equatorward displacement of the polar jet stream and the passage of low-pressure systems from the west in winter cause a temporary reduction in CO<sub>2</sub> concentrations.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"314 \",\"pages\":\"Article 107818\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809524006008\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524006008","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在全球变暖和气候变化中,二氧化碳(CO2)是最重要的温室气体之一。由于全球模式的水平分辨率较差,因此以每小时/每周的时间间隔和所需的垂直分辨率模拟CO2气体具有挑战性。本文采用气候研究与预报温室气体(WRF-GHG)模式在30和10 km空间分辨率下模拟了中东地区为第一域,伊朗为第二域的柱平均CO2混合比(XCO2)和CO2混合比的垂直截面。模拟考虑了二氧化碳的主要来源(人为、生物、火灾和海洋)和哥白尼大气监测服务(CAMS)数据集。利用GOSAT卫星观测反演的XCO2对2010年2月和8月柱平均CO2浓度的模拟结果进行了评价。结果表明,WRF-GHG能较好地模拟2010年2月和8月气温、风和相对湿度的时空变异性,相关系数r分别为0.86 ~ 0.92、0.67 ~ 0.75和0.76 ~ 0.82。WRF-GHG模拟在2月和8月的平均偏差分别为- 0.79和0.45 PPMV,优于全球模式TM3。伊朗人类活动净CO2排放的贡献率分别为38.33%和23.70%,每月分别为4.4和0.85 kg/km2。2月和8月对生物源、火灾源和海洋源的净排放贡献进行了评价,其中生物源排放贡献(31.901%和27.66%),生物源吸收贡献(24.07%和46.63%),火灾排放贡献(5.7%和2.064%),海洋排放贡献(3.23 × 10−6%和2.23 × 10−6%)。大尺度环流和生物活动是该区CO2空间和季节分布的主要特征。2月份,北纬地区柱状混合比较高;在八月,它们在南方更高。此外,模拟的垂直剖面显示,2月份对流层中下层和偏北/偏东北平流的CO2混合比较高;垂直剖面在8月倒转,平流层低层高浓度,与西南平流有关。然而,天气和次天气特征与地形的相互作用决定了CO2的精确弥散和分布。尽管伊朗中部和东部的排放量可以忽略不计,但这些因素在2月和8月的观测浓度中发挥了重要作用。8月,伊朗东部锡斯坦的120天低层季风气流与伊朗西部/西南部和扎格罗斯山脉的西风带之间的区域与伊朗平原的热低压和阿拉伯副热带高压相互作用。2月,西亚主要风向为西风,主要污染源来自东北地区,流向伊朗中东部。极地急流向赤道移动和冬季来自西部的低压系统的通过导致了CO2浓度的暂时降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atmospheric CO2 column concentration over Iran: Emissions, GOSAT satellite observations, and WRF-GHG model simulations
Regarding global warming and climate change, carbon dioxide (CO2) is one of the most important greenhouse gases. Simulating CO2 gas at hourly/weekly time intervals and desired vertical resolution is challenging due to the coarse horizontal resolution of global models. In this study, both column-averaged CO2 mixing ratio (XCO2) and vertical cross sections of CO2 mixing ratio were simulated by the Weather Research and Forecast Green House gas (WRF-GHG) model at spatial resolutions of 30 and 10 km for the Middle East region as the first domain, and Iran as the second domain. Simulations consider the primary CO2 sources (anthropogenic, biogenic, fire, and oceanic) and the Copernicus Atmosphere Monitoring Service (CAMS) dataset. XCO2 retrieved from GOSAT satellite observations was employed to evaluate the simulation results of the column-averaged CO2 concentrations in February and August 2010. The evaluations showed that the spatiotemporal variability of meteorological variables was well simulated by WRF-GHG with correlation coefficients r of 0.86–0.92, 0.67–0.75, and 0.76–0.82 for temperature, wind, and relative humidity, respectively, during February and August 2010. The evaluations also indicated that the WRF-GHG simulations outperformed the global model TM3, with mean bias error values of − 0.79 and 0.45 PPMV for WRF-GHG in February and August, respectively. The percentage contribution of net CO2 emissions from human activities in Iran was calculated as (38.33 % and 23.70 %) of the total emissions, respectively, with values of 4.4 and 0.85 kg/km2 in each month. The net emissions contributions of biogenic, fire, and oceanic sources were evaluated in February and August, with biogenic emissions contributing (31.901 % and 27.66 %), biogenic absorption contributing (24.07 % and 46.63 %), fire emissions contributing (5.7 % and 2.064 %), and oceanic emissions contributing (3.23 × 10−6 % and 2.23 × 10−6 %). Large-scale circulations and biogenic activity are responsible for the major features of the spatial and seasonal distribution of CO2 in the area. In February, column mixing ratios are higher in more northern latitudes; in August, they are higher to the south. Furthermore, the simulated vertical cross sections show high CO2 mixing ratios in the mid-lower troposphere and northerly/northeasterly advection in February; the vertical profile is inverted in August with high concentrations in the lower stratosphere associated with southwesterly advection. However, the interaction between the synoptic and sub-synoptic features with the topography determines the precise dispersion and distribution of CO2. Despite the negligible emissions in central and eastern Iran, these factors play an important role in the observed concentrations in February and August. In August, the areas between the 120-day low-level monsoon flow of Sistan in eastern Iran, and the westerlies over western/southwestern Iran and the Zagros Mountain range, interact with the heat-low in the Iranian plains and with the Arabian subtropical high. In February, the dominant winds in western Asia were west winds, with the main source of pollution coming from the northeastern regions flowing towards central and eastern Iran. The equatorward displacement of the polar jet stream and the passage of low-pressure systems from the west in winter cause a temporary reduction in CO2 concentrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
期刊最新文献
New insights into the molecular characteristics-dependent light absorption variation of water-soluble organic matter in biomass burning smoke Black carbon pollution over India simulated with recent emission inventories and WRF-CHEM model Characteristics of local recirculation affecting summer ozone in coastal areas of the Korean Peninsula Impacts of meteorological and precursor emission factors on PM2.5 and O3 from 2019 to 2022: Insights from multiple perspectives Evaluation of six latest precipitation datasets for extreme precipitation estimates and hydrological application across various climate regions in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1