催产素通过改善心脏糖代谢和调节OXTR/JAK2/STAT3轴来减轻心肌肥厚

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Peptides Pub Date : 2024-12-01 DOI:10.1016/j.peptides.2024.171323
Yuqiao Yang , Jin Liu , Lingyan Wang , Wen Wu, Quan Wang, Yu Zhao, Xi Qian, Zhuoran Wang, Na Fu, Yanqiong Wang, Jinqiao Qian
{"title":"催产素通过改善心脏糖代谢和调节OXTR/JAK2/STAT3轴来减轻心肌肥厚","authors":"Yuqiao Yang ,&nbsp;Jin Liu ,&nbsp;Lingyan Wang ,&nbsp;Wen Wu,&nbsp;Quan Wang,&nbsp;Yu Zhao,&nbsp;Xi Qian,&nbsp;Zhuoran Wang,&nbsp;Na Fu,&nbsp;Yanqiong Wang,&nbsp;Jinqiao Qian","doi":"10.1016/j.peptides.2024.171323","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The progress of cardiac hypertrophy is modulated by JAK2/STAT3 signaling pathway. Cardiac glucose metabolism derangement exacerbates the progression of cardiac hypertrophy. Oxytocin (OT) has emerged as a significant hormone involved in cardiovascular homeostasis, especially in protecting against cardiac hypertrophy. The present study aims to explore whether the anti-hypertrophy effect of oxytocin is related to the JAK2/STAT3 signaling pathway and cardiac glucose metablism.</div></div><div><h3>Methods</h3><div>Cardiac hypertrophy model was induced by angiotensin II (Ang II) in H9c2 cells and in mice with or without oxytocin treatment. Changes in cardiac histopathology were evaluated by hematoxylin and eosin (H&amp;E), Masson staining, and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes and JAK2/STAT3 pathway signaling molecules were analyzed by qRT-PCR and western blotting. The levels of glucose, pyruvic acid, lactic acid, and lactate dehydrogenase activity in H9c2 cells using the corresponding assay kits.</div></div><div><h3>Results</h3><div>The results showed that OT inhibited hypertrophic and fibrotic changes. Furthermore, OT increased intracellular levels of glucose and pyruvic acid, and decreased lactate dehydrogenase activity and lactic acid levels. Mechanistically, Ang II decreased oxytocin receptors (OXTR) expression and facilitated JAK2 and STAT3 phosphorylation. OT treatment increased OXTR expression and blocked JAK2 and STAT3 phosphorylation The OXTR-specific siRNA-mediated depleted expression could abrogate OT-induced anti-hypertrophic effects in H9c2 cells following angiotensin II insult. However, the JAK2/STAT3 inhibitor AG490 rescued the protective effects of OT against cardiac hypertrophy under OXTR downregulation.</div></div><div><h3><strong>Conclusion</strong></h3><div>OT exerts its protective effects against cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis.</div></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"182 ","pages":"Article 171323"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxytocin attenuates cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis\",\"authors\":\"Yuqiao Yang ,&nbsp;Jin Liu ,&nbsp;Lingyan Wang ,&nbsp;Wen Wu,&nbsp;Quan Wang,&nbsp;Yu Zhao,&nbsp;Xi Qian,&nbsp;Zhuoran Wang,&nbsp;Na Fu,&nbsp;Yanqiong Wang,&nbsp;Jinqiao Qian\",\"doi\":\"10.1016/j.peptides.2024.171323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The progress of cardiac hypertrophy is modulated by JAK2/STAT3 signaling pathway. Cardiac glucose metabolism derangement exacerbates the progression of cardiac hypertrophy. Oxytocin (OT) has emerged as a significant hormone involved in cardiovascular homeostasis, especially in protecting against cardiac hypertrophy. The present study aims to explore whether the anti-hypertrophy effect of oxytocin is related to the JAK2/STAT3 signaling pathway and cardiac glucose metablism.</div></div><div><h3>Methods</h3><div>Cardiac hypertrophy model was induced by angiotensin II (Ang II) in H9c2 cells and in mice with or without oxytocin treatment. Changes in cardiac histopathology were evaluated by hematoxylin and eosin (H&amp;E), Masson staining, and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes and JAK2/STAT3 pathway signaling molecules were analyzed by qRT-PCR and western blotting. The levels of glucose, pyruvic acid, lactic acid, and lactate dehydrogenase activity in H9c2 cells using the corresponding assay kits.</div></div><div><h3>Results</h3><div>The results showed that OT inhibited hypertrophic and fibrotic changes. Furthermore, OT increased intracellular levels of glucose and pyruvic acid, and decreased lactate dehydrogenase activity and lactic acid levels. Mechanistically, Ang II decreased oxytocin receptors (OXTR) expression and facilitated JAK2 and STAT3 phosphorylation. OT treatment increased OXTR expression and blocked JAK2 and STAT3 phosphorylation The OXTR-specific siRNA-mediated depleted expression could abrogate OT-induced anti-hypertrophic effects in H9c2 cells following angiotensin II insult. However, the JAK2/STAT3 inhibitor AG490 rescued the protective effects of OT against cardiac hypertrophy under OXTR downregulation.</div></div><div><h3><strong>Conclusion</strong></h3><div>OT exerts its protective effects against cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis.</div></div>\",\"PeriodicalId\":19765,\"journal\":{\"name\":\"Peptides\",\"volume\":\"182 \",\"pages\":\"Article 171323\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196978124001761\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196978124001761","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景心肌肥厚的进展受JAK2/STAT3信号通路的调控。心脏糖代谢紊乱加剧了心脏肥厚的进展。催产素(OT)已成为一种重要的激素,参与心血管稳态,特别是防止心脏肥厚。本研究旨在探讨催产素的抗肥厚作用是否与JAK2/STAT3信号通路和心脏糖代谢有关。方法采用血管紧张素II (Ang II)诱导H9c2细胞心肌肥厚模型,并在催产素处理和未处理小鼠心肌肥厚模型中进行比较。通过苏木精和伊红(H&;E)、Masson染色和小麦胚芽凝集素(WGA)染色评估心脏组织病理学的变化。采用qRT-PCR和western blotting分析肥大相关基因和JAK2/STAT3通路信号分子。使用相应的检测试剂盒检测H9c2细胞中葡萄糖、丙酮酸、乳酸和乳酸脱氢酶活性的水平。结果OT对大鼠大鼠增生性和纤维化有抑制作用。此外,OT增加细胞内葡萄糖和丙酮酸水平,降低乳酸脱氢酶活性和乳酸水平。在机制上,Ang II降低了催产素受体(OXTR)的表达,促进了JAK2和STAT3的磷酸化。在血管紧张素II损伤H9c2细胞后,OXTR特异性sirna介导的表达缺失可以消除OT诱导的抗肥厚作用。然而,JAK2/STAT3抑制剂AG490在OXTR下调的情况下恢复了OT对心脏肥厚的保护作用。结论ot通过改善心脏糖代谢、调节OXTR/JAK2/STAT3轴对心肌肥厚具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxytocin attenuates cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis

Background

The progress of cardiac hypertrophy is modulated by JAK2/STAT3 signaling pathway. Cardiac glucose metabolism derangement exacerbates the progression of cardiac hypertrophy. Oxytocin (OT) has emerged as a significant hormone involved in cardiovascular homeostasis, especially in protecting against cardiac hypertrophy. The present study aims to explore whether the anti-hypertrophy effect of oxytocin is related to the JAK2/STAT3 signaling pathway and cardiac glucose metablism.

Methods

Cardiac hypertrophy model was induced by angiotensin II (Ang II) in H9c2 cells and in mice with or without oxytocin treatment. Changes in cardiac histopathology were evaluated by hematoxylin and eosin (H&E), Masson staining, and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes and JAK2/STAT3 pathway signaling molecules were analyzed by qRT-PCR and western blotting. The levels of glucose, pyruvic acid, lactic acid, and lactate dehydrogenase activity in H9c2 cells using the corresponding assay kits.

Results

The results showed that OT inhibited hypertrophic and fibrotic changes. Furthermore, OT increased intracellular levels of glucose and pyruvic acid, and decreased lactate dehydrogenase activity and lactic acid levels. Mechanistically, Ang II decreased oxytocin receptors (OXTR) expression and facilitated JAK2 and STAT3 phosphorylation. OT treatment increased OXTR expression and blocked JAK2 and STAT3 phosphorylation The OXTR-specific siRNA-mediated depleted expression could abrogate OT-induced anti-hypertrophic effects in H9c2 cells following angiotensin II insult. However, the JAK2/STAT3 inhibitor AG490 rescued the protective effects of OT against cardiac hypertrophy under OXTR downregulation.

Conclusion

OT exerts its protective effects against cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Peptides
Peptides 医学-生化与分子生物学
CiteScore
6.40
自引率
6.70%
发文量
130
审稿时长
28 days
期刊介绍: Peptides is an international journal presenting original contributions on the biochemistry, physiology and pharmacology of biological active peptides, as well as their functions that relate to gastroenterology, endocrinology, and behavioral effects. Peptides emphasizes all aspects of high profile peptide research in mammals and non-mammalian vertebrates. Special consideration can be given to plants and invertebrates. Submission of articles with clinical relevance is particularly encouraged.
期刊最新文献
Compensatory mechanisms underlying arginine vasopressin regulation in transient polyuria during pregnancy. Phoenixin's Influence on HPG Axis and Inflammation in Elite Ice Hockey Athletes: A Cross-Sectional Analysis. Ghrelin Promotes Chronic Diabetic Wound Healing by Regulating Keratinocyte Proliferation and Migration Through the ERK1/2 Pathway. Effects of irisin on ovariectomy-induced depression, anxiety, and bodyweight growth in female mice. Estrogens impair hypophagia and hypothalamic cell activation induced by vasoactive intestinal peptide, but not by pituitary adenylate cyclase-activating polypeptide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1