来自重暗物质粒子湮灭的宇宙射线

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Nuclear Physics B Pub Date : 2024-11-26 DOI:10.1016/j.nuclphysb.2024.116754
E.V. Arbuzova , A.D. Dolgov , A.A. Nikitenko
{"title":"来自重暗物质粒子湮灭的宇宙射线","authors":"E.V. Arbuzova ,&nbsp;A.D. Dolgov ,&nbsp;A.A. Nikitenko","doi":"10.1016/j.nuclphysb.2024.116754","DOIUrl":null,"url":null,"abstract":"<div><div>The origin of the ultra high energy cosmic rays via annihilation of heavy stable, fermions “f”, of the cosmological dark matter (DM) is studied. The particles in question are supposed to be created by the scalaron decays in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> modified gravity. The novel part of our approach is the assumption that the mass of these carriers of DM is slightly below than a half of the scalaron mass. In such a case the phase space volume becomes tiny. It leads to sufficiently low probability of “f” production, so their average cosmological energy density could be equal to the observed energy density of dark matter. Several regions of the universe, where the annihilation could take place, are studied. They include the whole universe under the assumption of homogeneous energy density, the high density DM clump in the galactic center, the cloud of DM in the Galaxy with realistic density distribution, and high density clumps of DM in the Galaxy. Possible resonance annihilation of <span><math><mi>f</mi><mover><mrow><mi>f</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> into energetic light particles is considered. We have shown that the proposed scenario can successfully explain the origin of the ultrahigh energy flux of cosmic rays where canonical astrophysical mechanisms are not operative.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1010 ","pages":"Article 116754"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosmic rays from annihilation of heavy dark matter particles\",\"authors\":\"E.V. Arbuzova ,&nbsp;A.D. Dolgov ,&nbsp;A.A. Nikitenko\",\"doi\":\"10.1016/j.nuclphysb.2024.116754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The origin of the ultra high energy cosmic rays via annihilation of heavy stable, fermions “f”, of the cosmological dark matter (DM) is studied. The particles in question are supposed to be created by the scalaron decays in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> modified gravity. The novel part of our approach is the assumption that the mass of these carriers of DM is slightly below than a half of the scalaron mass. In such a case the phase space volume becomes tiny. It leads to sufficiently low probability of “f” production, so their average cosmological energy density could be equal to the observed energy density of dark matter. Several regions of the universe, where the annihilation could take place, are studied. They include the whole universe under the assumption of homogeneous energy density, the high density DM clump in the galactic center, the cloud of DM in the Galaxy with realistic density distribution, and high density clumps of DM in the Galaxy. Possible resonance annihilation of <span><math><mi>f</mi><mover><mrow><mi>f</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> into energetic light particles is considered. We have shown that the proposed scenario can successfully explain the origin of the ultrahigh energy flux of cosmic rays where canonical astrophysical mechanisms are not operative.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1010 \",\"pages\":\"Article 116754\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324003201\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324003201","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

通过宇宙暗物质(DM)的重稳定费米子“f”湮灭,研究了超高能宇宙射线的起源。所讨论的粒子应该是在R2修正重力下由标量衰变产生的。我们方法的新颖之处在于假设这些DM载流子的质量略低于标量质量的一半。在这种情况下,相空间体积变得很小。它导致产生f的概率足够低,因此它们的平均宇宙能量密度可能等于观测到的暗物质的能量密度。研究了宇宙中可能发生湮灭的几个区域。它们包括能量密度均匀假设下的整个宇宙,星系中心的高密度DM团块,具有真实密度分布的星系中DM云,以及星系中高密度DM团块。考虑了ff¯在高能光粒子中的可能共振湮灭。我们已经证明,所提出的情景可以成功地解释宇宙射线超高能量通量的起源,而规范的天体物理机制不起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cosmic rays from annihilation of heavy dark matter particles
The origin of the ultra high energy cosmic rays via annihilation of heavy stable, fermions “f”, of the cosmological dark matter (DM) is studied. The particles in question are supposed to be created by the scalaron decays in R2 modified gravity. The novel part of our approach is the assumption that the mass of these carriers of DM is slightly below than a half of the scalaron mass. In such a case the phase space volume becomes tiny. It leads to sufficiently low probability of “f” production, so their average cosmological energy density could be equal to the observed energy density of dark matter. Several regions of the universe, where the annihilation could take place, are studied. They include the whole universe under the assumption of homogeneous energy density, the high density DM clump in the galactic center, the cloud of DM in the Galaxy with realistic density distribution, and high density clumps of DM in the Galaxy. Possible resonance annihilation of ff¯ into energetic light particles is considered. We have shown that the proposed scenario can successfully explain the origin of the ultrahigh energy flux of cosmic rays where canonical astrophysical mechanisms are not operative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
期刊最新文献
Charm and the standard model A chiral Λ-bms4 symmetry of AdS4 gravity Complexity of quantum-mechanical evolutions from probability amplitudes Cosmic rays from annihilation of heavy dark matter particles Search for nearly degenerate higgsinos via photon fusion with the semileptonic channel at the LHC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1