直接正常辐照度预测的现代深度神经网络:一种分类方法

Muhammad Saud Ul Hassan , Kashif Liaqat , Laura Schaefer , Alexander J. Zolan
{"title":"直接正常辐照度预测的现代深度神经网络:一种分类方法","authors":"Muhammad Saud Ul Hassan ,&nbsp;Kashif Liaqat ,&nbsp;Laura Schaefer ,&nbsp;Alexander J. Zolan","doi":"10.1016/j.prime.2024.100853","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating energy demand and the adverse environmental impacts of fossil-fuel use necessitate a shift towards cleaner and renewable alternatives. Concentrated Solar Power (CSP) technology emerges as a promising solution, offering a carbon-free alternative for power generation. The efficiency and profitability of CSP depend on the Direct Normal Irradiance (DNI) component of solar radiation; hence, accurate DNI forecasting can help optimize CSP plants’ operations and performance. The unpredictable nature of weather phenomena, particularly cloud cover, introduces uncertainty into DNI projections. Existing DNI forecasting models use meteorological factors, which are both challenging to estimate numerically over short prediction windows and expensive to model through data at a sufficiently high spatial and temporal resolution. This research addresses the challenge by presenting a novel approach that formulates DNI prediction as a multi-class classification problem, departing from conventional regression-based methods. The primary objective of this classification framework is to identify optimal periods aligning with specific operational thresholds for CSP plants, contributing to enhanced dispatch optimization strategies. We model the DNI classification problem using four advanced deep neural networks – rectified linear unit (ReLU) networks, 1D residual networks (ResNets), bidirectional long short-term memory (BiLSTM) networks, and transformers – achieving accuracies up to 93.5% without requiring meteorological parameters.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"10 ","pages":"Article 100853"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modern deep neural networks for Direct Normal Irradiance forecasting: A classification approach\",\"authors\":\"Muhammad Saud Ul Hassan ,&nbsp;Kashif Liaqat ,&nbsp;Laura Schaefer ,&nbsp;Alexander J. Zolan\",\"doi\":\"10.1016/j.prime.2024.100853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The escalating energy demand and the adverse environmental impacts of fossil-fuel use necessitate a shift towards cleaner and renewable alternatives. Concentrated Solar Power (CSP) technology emerges as a promising solution, offering a carbon-free alternative for power generation. The efficiency and profitability of CSP depend on the Direct Normal Irradiance (DNI) component of solar radiation; hence, accurate DNI forecasting can help optimize CSP plants’ operations and performance. The unpredictable nature of weather phenomena, particularly cloud cover, introduces uncertainty into DNI projections. Existing DNI forecasting models use meteorological factors, which are both challenging to estimate numerically over short prediction windows and expensive to model through data at a sufficiently high spatial and temporal resolution. This research addresses the challenge by presenting a novel approach that formulates DNI prediction as a multi-class classification problem, departing from conventional regression-based methods. The primary objective of this classification framework is to identify optimal periods aligning with specific operational thresholds for CSP plants, contributing to enhanced dispatch optimization strategies. We model the DNI classification problem using four advanced deep neural networks – rectified linear unit (ReLU) networks, 1D residual networks (ResNets), bidirectional long short-term memory (BiLSTM) networks, and transformers – achieving accuracies up to 93.5% without requiring meteorological parameters.</div></div>\",\"PeriodicalId\":100488,\"journal\":{\"name\":\"e-Prime - Advances in Electrical Engineering, Electronics and Energy\",\"volume\":\"10 \",\"pages\":\"Article 100853\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Prime - Advances in Electrical Engineering, Electronics and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772671124004327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671124004327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不断上升的能源需求和化石燃料使用对环境的不利影响,使我们必须转向更清洁和可再生的替代品。聚光太阳能发电(CSP)技术作为一种很有前途的解决方案出现,为发电提供了一种无碳替代方案。CSP的效率和盈利能力取决于太阳辐射的直接正常辐照度(DNI)成分;因此,准确的DNI预测可以帮助优化CSP电厂的运营和性能。天气现象的不可预测性,尤其是云层,给DNI预估带来了不确定性。现有的DNI预报模式使用气象因子,在短的预报窗口内进行数值估计具有挑战性,并且通过足够高的时空分辨率的数据进行建模的成本很高。本研究通过提出一种新颖的方法来解决这一挑战,该方法将DNI预测作为一个多类分类问题,与传统的基于回归的方法不同。该分类框架的主要目标是确定与CSP电厂特定运行阈值相一致的最佳周期,有助于增强调度优化策略。我们使用四种先进的深度神经网络——整流线性单元(ReLU)网络、一维残余网络(ResNets)、双向长短期记忆(BiLSTM)网络和变压器——对DNI分类问题进行建模,在不需要气象参数的情况下,准确率高达93.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modern deep neural networks for Direct Normal Irradiance forecasting: A classification approach
The escalating energy demand and the adverse environmental impacts of fossil-fuel use necessitate a shift towards cleaner and renewable alternatives. Concentrated Solar Power (CSP) technology emerges as a promising solution, offering a carbon-free alternative for power generation. The efficiency and profitability of CSP depend on the Direct Normal Irradiance (DNI) component of solar radiation; hence, accurate DNI forecasting can help optimize CSP plants’ operations and performance. The unpredictable nature of weather phenomena, particularly cloud cover, introduces uncertainty into DNI projections. Existing DNI forecasting models use meteorological factors, which are both challenging to estimate numerically over short prediction windows and expensive to model through data at a sufficiently high spatial and temporal resolution. This research addresses the challenge by presenting a novel approach that formulates DNI prediction as a multi-class classification problem, departing from conventional regression-based methods. The primary objective of this classification framework is to identify optimal periods aligning with specific operational thresholds for CSP plants, contributing to enhanced dispatch optimization strategies. We model the DNI classification problem using four advanced deep neural networks – rectified linear unit (ReLU) networks, 1D residual networks (ResNets), bidirectional long short-term memory (BiLSTM) networks, and transformers – achieving accuracies up to 93.5% without requiring meteorological parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Modular nine-level single-phase inverter with quadruple voltage gain using reduced blocking voltage switches Identification of multiple power quality disturbances in hybrid microgrid using deep stacked auto-encoder based bi-directional LSTM classifier Exponential function LMS and fractional order pid based voltage power quality enhancement in distribution network A new discrete GaN-based dv/dt control circuit for megahertz frequency power converters Anomaly detection of adversarial cyber attacks on electric vehicle charging stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1