{"title":"探讨皮肤黑色素瘤和胰腺癌的常见突变景观。","authors":"Elisabetta Broseghini, Federico Venturi, Giulia Veronesi, Biagio Scotti, Marina Migliori, Desy Marini, Claudio Ricci, Riccardo Casadei, Manuela Ferracin, Emi Dika","doi":"10.1111/pcmr.13210","DOIUrl":null,"url":null,"abstract":"<p>Cutaneous melanoma (CM) and pancreatic cancer are aggressive tumors whose incidences are rapidly increasing in the last years. This review aims to provide a complete and update description about mutational landscape in CM and pancreatic cancer, focusing on similarities of these two apparently so different tumors in terms of site, type of cell involved, and embryonic origin. The familial forms of CM and pancreatic cancers are often characterized by a common mutated gene, namely <i>CDKN2A</i>. In fact, a germline mutation in <i>CDKN2A</i> gene can be responsible for the development of the familial atypical multiple mole and melanoma syndrome (FAMMM), which is characterized by melanomas and pancreatic cancer development. Sporadic melanoma and pancreatic cancer showed different key-driven genes. The open-access resource cBioPortal has been explored to deepen and investigate the common mutational landscape of these two tumors. We investigated the common mutated genes found in both melanoma and pancreatic cancer with a frequency of at least 5% of tested patients and copy number alterations with a frequency of at least of 3%. Data showed that 18 mutated genes and 3 copy number alterations are present in both melanoma and pancreatic cancers types. Since we found two patients that developed both melanoma and pancreatic cancer, we compared mutation landscape between the two tumors and identified a pathogenic variant in <i>BRCA2</i> gene. This review gives valuable insights into the genetic underpinnings of melanoma and pancreatic cancer, urging the continued exploration and research of new genetic biomarkers able to identify patients and families at high risk of developing both cancers and to address to screening and to an effective clinical management of the patient.</p>","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":"38 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681848/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Common Mutational Landscape in Cutaneous Melanoma and Pancreatic Cancer\",\"authors\":\"Elisabetta Broseghini, Federico Venturi, Giulia Veronesi, Biagio Scotti, Marina Migliori, Desy Marini, Claudio Ricci, Riccardo Casadei, Manuela Ferracin, Emi Dika\",\"doi\":\"10.1111/pcmr.13210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cutaneous melanoma (CM) and pancreatic cancer are aggressive tumors whose incidences are rapidly increasing in the last years. This review aims to provide a complete and update description about mutational landscape in CM and pancreatic cancer, focusing on similarities of these two apparently so different tumors in terms of site, type of cell involved, and embryonic origin. The familial forms of CM and pancreatic cancers are often characterized by a common mutated gene, namely <i>CDKN2A</i>. In fact, a germline mutation in <i>CDKN2A</i> gene can be responsible for the development of the familial atypical multiple mole and melanoma syndrome (FAMMM), which is characterized by melanomas and pancreatic cancer development. Sporadic melanoma and pancreatic cancer showed different key-driven genes. The open-access resource cBioPortal has been explored to deepen and investigate the common mutational landscape of these two tumors. We investigated the common mutated genes found in both melanoma and pancreatic cancer with a frequency of at least 5% of tested patients and copy number alterations with a frequency of at least of 3%. Data showed that 18 mutated genes and 3 copy number alterations are present in both melanoma and pancreatic cancers types. Since we found two patients that developed both melanoma and pancreatic cancer, we compared mutation landscape between the two tumors and identified a pathogenic variant in <i>BRCA2</i> gene. This review gives valuable insights into the genetic underpinnings of melanoma and pancreatic cancer, urging the continued exploration and research of new genetic biomarkers able to identify patients and families at high risk of developing both cancers and to address to screening and to an effective clinical management of the patient.</p>\",\"PeriodicalId\":219,\"journal\":{\"name\":\"Pigment Cell & Melanoma Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681848/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment Cell & Melanoma Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13210\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exploring the Common Mutational Landscape in Cutaneous Melanoma and Pancreatic Cancer
Cutaneous melanoma (CM) and pancreatic cancer are aggressive tumors whose incidences are rapidly increasing in the last years. This review aims to provide a complete and update description about mutational landscape in CM and pancreatic cancer, focusing on similarities of these two apparently so different tumors in terms of site, type of cell involved, and embryonic origin. The familial forms of CM and pancreatic cancers are often characterized by a common mutated gene, namely CDKN2A. In fact, a germline mutation in CDKN2A gene can be responsible for the development of the familial atypical multiple mole and melanoma syndrome (FAMMM), which is characterized by melanomas and pancreatic cancer development. Sporadic melanoma and pancreatic cancer showed different key-driven genes. The open-access resource cBioPortal has been explored to deepen and investigate the common mutational landscape of these two tumors. We investigated the common mutated genes found in both melanoma and pancreatic cancer with a frequency of at least 5% of tested patients and copy number alterations with a frequency of at least of 3%. Data showed that 18 mutated genes and 3 copy number alterations are present in both melanoma and pancreatic cancers types. Since we found two patients that developed both melanoma and pancreatic cancer, we compared mutation landscape between the two tumors and identified a pathogenic variant in BRCA2 gene. This review gives valuable insights into the genetic underpinnings of melanoma and pancreatic cancer, urging the continued exploration and research of new genetic biomarkers able to identify patients and families at high risk of developing both cancers and to address to screening and to an effective clinical management of the patient.
期刊介绍:
Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords
Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders