Emmanuel Acheampong, Eric Adua, Christian Obirikorang, Enoch Odame Anto, Emmanuel Peprah-Yamoah, Yaa Obirikorang, Evans Adu Asamoah, Victor Opoku-Yamoah, Michael Nyantakyi, John Taylor, Tonnies Abeku Buckman, Maryam Yakubu, Ebenezer Afrifa-Yamoah
{"title":"加纳糖尿病患者代谢综合征的预测建模:一种集成机器学习方法。","authors":"Emmanuel Acheampong, Eric Adua, Christian Obirikorang, Enoch Odame Anto, Emmanuel Peprah-Yamoah, Yaa Obirikorang, Evans Adu Asamoah, Victor Opoku-Yamoah, Michael Nyantakyi, John Taylor, Tonnies Abeku Buckman, Maryam Yakubu, Ebenezer Afrifa-Yamoah","doi":"10.1007/s40200-024-01491-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The burgeoning prevalence of cardiometabolic disorders, including type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) within Africa is concerning. Machine learning (ML) techniques offer a unique opportunity to leverage data-driven insights and construct predictive models for MetS risk, thereby enhancing the implementation of personalised prevention strategies. In this work, we employed ML techniques to develop predictive models for pre-MetS and MetS among diabetic patients.</p><p><strong>Methods: </strong>This multi-centre cross-sectional study comprised of 919 T2DM patients. Age, gender, novel anthropometric indices along with biochemical measures were analysed using BORUTA feature selection and an ensemble majority voting classification model, which included logistic regression, k-nearest neighbour, Gaussian Naive Bayes, Gradient boosting classification, and support vector machine.</p><p><strong>Results: </strong>Distinct metabolic profiles and phenotype clusters were associated with MetS progression. The BORUTA algorithm identified 10 and 16 significant features for pre-MetS and MetS prediction, respectively. For pre-MetS, the top-ranked features were lipid accumulation product (LAP), triglyceride-glucose index adjusted for waist-to-height ratio (TyG-WHtR), coronary risk (CR), visceral adiposity index (VAI) and abdominal volume index (AVI). For MetS prediction, the most influential features were VAI, LAP, waist triglyceride index (WTI), Very low-density cholesterol (VLDLC) and TyG-WHtR. Majority voting ensemble classifier demonstrated superior performance in predicting pre-MetS (AUC = 0.79) and MetS (AUC = 0.87).</p><p><strong>Conclusion: </strong>Identifying these risk factors reveals the complex interplay between visceral adiposity and metabolic dysregulation in African populations, enabling early detection and treatment. Ethical integration of ML algorithms in clinical decision-making can streamline identification of high-risk individuals, optimize resource allocation, and enable precise, tailored interventions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40200-024-01491-7.</p>","PeriodicalId":15635,"journal":{"name":"Journal of Diabetes and Metabolic Disorders","volume":"23 2","pages":"2233-2249"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599523/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictive modelling of metabolic syndrome in Ghanaian diabetic patients: an ensemble machine learning approach.\",\"authors\":\"Emmanuel Acheampong, Eric Adua, Christian Obirikorang, Enoch Odame Anto, Emmanuel Peprah-Yamoah, Yaa Obirikorang, Evans Adu Asamoah, Victor Opoku-Yamoah, Michael Nyantakyi, John Taylor, Tonnies Abeku Buckman, Maryam Yakubu, Ebenezer Afrifa-Yamoah\",\"doi\":\"10.1007/s40200-024-01491-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The burgeoning prevalence of cardiometabolic disorders, including type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) within Africa is concerning. Machine learning (ML) techniques offer a unique opportunity to leverage data-driven insights and construct predictive models for MetS risk, thereby enhancing the implementation of personalised prevention strategies. In this work, we employed ML techniques to develop predictive models for pre-MetS and MetS among diabetic patients.</p><p><strong>Methods: </strong>This multi-centre cross-sectional study comprised of 919 T2DM patients. Age, gender, novel anthropometric indices along with biochemical measures were analysed using BORUTA feature selection and an ensemble majority voting classification model, which included logistic regression, k-nearest neighbour, Gaussian Naive Bayes, Gradient boosting classification, and support vector machine.</p><p><strong>Results: </strong>Distinct metabolic profiles and phenotype clusters were associated with MetS progression. The BORUTA algorithm identified 10 and 16 significant features for pre-MetS and MetS prediction, respectively. For pre-MetS, the top-ranked features were lipid accumulation product (LAP), triglyceride-glucose index adjusted for waist-to-height ratio (TyG-WHtR), coronary risk (CR), visceral adiposity index (VAI) and abdominal volume index (AVI). For MetS prediction, the most influential features were VAI, LAP, waist triglyceride index (WTI), Very low-density cholesterol (VLDLC) and TyG-WHtR. Majority voting ensemble classifier demonstrated superior performance in predicting pre-MetS (AUC = 0.79) and MetS (AUC = 0.87).</p><p><strong>Conclusion: </strong>Identifying these risk factors reveals the complex interplay between visceral adiposity and metabolic dysregulation in African populations, enabling early detection and treatment. Ethical integration of ML algorithms in clinical decision-making can streamline identification of high-risk individuals, optimize resource allocation, and enable precise, tailored interventions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40200-024-01491-7.</p>\",\"PeriodicalId\":15635,\"journal\":{\"name\":\"Journal of Diabetes and Metabolic Disorders\",\"volume\":\"23 2\",\"pages\":\"2233-2249\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599523/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes and Metabolic Disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40200-024-01491-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes and Metabolic Disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40200-024-01491-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Predictive modelling of metabolic syndrome in Ghanaian diabetic patients: an ensemble machine learning approach.
Objectives: The burgeoning prevalence of cardiometabolic disorders, including type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) within Africa is concerning. Machine learning (ML) techniques offer a unique opportunity to leverage data-driven insights and construct predictive models for MetS risk, thereby enhancing the implementation of personalised prevention strategies. In this work, we employed ML techniques to develop predictive models for pre-MetS and MetS among diabetic patients.
Methods: This multi-centre cross-sectional study comprised of 919 T2DM patients. Age, gender, novel anthropometric indices along with biochemical measures were analysed using BORUTA feature selection and an ensemble majority voting classification model, which included logistic regression, k-nearest neighbour, Gaussian Naive Bayes, Gradient boosting classification, and support vector machine.
Results: Distinct metabolic profiles and phenotype clusters were associated with MetS progression. The BORUTA algorithm identified 10 and 16 significant features for pre-MetS and MetS prediction, respectively. For pre-MetS, the top-ranked features were lipid accumulation product (LAP), triglyceride-glucose index adjusted for waist-to-height ratio (TyG-WHtR), coronary risk (CR), visceral adiposity index (VAI) and abdominal volume index (AVI). For MetS prediction, the most influential features were VAI, LAP, waist triglyceride index (WTI), Very low-density cholesterol (VLDLC) and TyG-WHtR. Majority voting ensemble classifier demonstrated superior performance in predicting pre-MetS (AUC = 0.79) and MetS (AUC = 0.87).
Conclusion: Identifying these risk factors reveals the complex interplay between visceral adiposity and metabolic dysregulation in African populations, enabling early detection and treatment. Ethical integration of ML algorithms in clinical decision-making can streamline identification of high-risk individuals, optimize resource allocation, and enable precise, tailored interventions.
Supplementary information: The online version contains supplementary material available at 10.1007/s40200-024-01491-7.
期刊介绍:
Journal of Diabetes & Metabolic Disorders is a peer reviewed journal which publishes original clinical and translational articles and reviews in the field of endocrinology and provides a forum of debate of the highest quality on these issues. Topics of interest include, but are not limited to, diabetes, lipid disorders, metabolic disorders, osteoporosis, interdisciplinary practices in endocrinology, cardiovascular and metabolic risk, aging research, obesity, traditional medicine, pychosomatic research, behavioral medicine, ethics and evidence-based practices.As of Jan 2018 the journal is published by Springer as a hybrid journal with no article processing charges. All articles published before 2018 are available free of charge on springerlink.Unofficial 2017 2-year Impact Factor: 1.816.