Yunyang Li, Shu Guo, Ben Mattison, Junjie Hu, Kwun Nok Mimi Man, Weijian Yang
{"title":"自适应线激发的高速双光子显微镜。","authors":"Yunyang Li, Shu Guo, Ben Mattison, Junjie Hu, Kwun Nok Mimi Man, Weijian Yang","doi":"10.1364/OPTICA.529930","DOIUrl":null,"url":null,"abstract":"<p><p>We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortex <i>in vivo</i>. Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.</p>","PeriodicalId":19515,"journal":{"name":"Optica","volume":"11 8","pages":"1138-1145"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601119/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-speed two-photon microscopy with adaptive line-excitation.\",\"authors\":\"Yunyang Li, Shu Guo, Ben Mattison, Junjie Hu, Kwun Nok Mimi Man, Weijian Yang\",\"doi\":\"10.1364/OPTICA.529930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortex <i>in vivo</i>. Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.</p>\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"11 8\",\"pages\":\"1138-1145\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601119/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OPTICA.529930\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OPTICA.529930","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
High-speed two-photon microscopy with adaptive line-excitation.
We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortex in vivo. Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.