用NAO学习手语:人形机器人作为帮助学习哥伦比亚手语的工具。

IF 2.9 Q2 ROBOTICS Frontiers in Robotics and AI Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1475069
Juan E Mora-Zarate, Claudia L Garzón-Castro, Jorge A Castellanos Rivillas
{"title":"用NAO学习手语:人形机器人作为帮助学习哥伦比亚手语的工具。","authors":"Juan E Mora-Zarate, Claudia L Garzón-Castro, Jorge A Castellanos Rivillas","doi":"10.3389/frobt.2024.1475069","DOIUrl":null,"url":null,"abstract":"<p><p>Sign languages are one of the main rehabilitation methods for dealing with hearing loss. Like any other language, the geographical location will influence on how signs are made. Particularly in Colombia, the hard of hearing population is lacking from education in the Colombian Sign Language, mainly due of the reduce number of interpreters in the educational sector. To help mitigate this problem, Machine Learning binded to data gloves or Computer Vision technologies have emerged to be the accessory of sign translation systems and educational tools, however, in Colombia the presence of this solutions is scarce. On the other hand, humanoid robots such as the NAO have shown significant results when used to support a learning process. This paper proposes a performance evaluation for the design of an activity to support the learning process of all the 11 color-based signs from the Colombian Sign Language. Which consists of an evaluation method with two modes activated through user interaction, the first mode will allow to choose the color sign to be evaluated, and the second will decide randomly the color sign. To achieve this, MediaPipe tool was used to extract torso and hand coordinates, which were the input for a Neural Network. The performance of the Neural Network was evaluated running continuously in two scenarios, first, video capture from the webcam of the computer which showed an overall F1 score of 91.6% and a prediction time of 85.2 m, second, wireless video streaming with NAO H25 V6 camera which had an F1 score of 93.8% and a prediction time of 2.29 s. In addition, we took advantage of the joint redundancy that NAO H25 V6 has, since with its 25 degrees of freedom we were able to use gestures that created nonverbal human-robot interactions, which may be useful in future works where we want to implement this activity with a deaf community.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1475069"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602449/pdf/","citationCount":"0","resultStr":"{\"title\":\"Learning signs with NAO: humanoid robot as a tool for helping to learn Colombian Sign Language.\",\"authors\":\"Juan E Mora-Zarate, Claudia L Garzón-Castro, Jorge A Castellanos Rivillas\",\"doi\":\"10.3389/frobt.2024.1475069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sign languages are one of the main rehabilitation methods for dealing with hearing loss. Like any other language, the geographical location will influence on how signs are made. Particularly in Colombia, the hard of hearing population is lacking from education in the Colombian Sign Language, mainly due of the reduce number of interpreters in the educational sector. To help mitigate this problem, Machine Learning binded to data gloves or Computer Vision technologies have emerged to be the accessory of sign translation systems and educational tools, however, in Colombia the presence of this solutions is scarce. On the other hand, humanoid robots such as the NAO have shown significant results when used to support a learning process. This paper proposes a performance evaluation for the design of an activity to support the learning process of all the 11 color-based signs from the Colombian Sign Language. Which consists of an evaluation method with two modes activated through user interaction, the first mode will allow to choose the color sign to be evaluated, and the second will decide randomly the color sign. To achieve this, MediaPipe tool was used to extract torso and hand coordinates, which were the input for a Neural Network. The performance of the Neural Network was evaluated running continuously in two scenarios, first, video capture from the webcam of the computer which showed an overall F1 score of 91.6% and a prediction time of 85.2 m, second, wireless video streaming with NAO H25 V6 camera which had an F1 score of 93.8% and a prediction time of 2.29 s. In addition, we took advantage of the joint redundancy that NAO H25 V6 has, since with its 25 degrees of freedom we were able to use gestures that created nonverbal human-robot interactions, which may be useful in future works where we want to implement this activity with a deaf community.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"11 \",\"pages\":\"1475069\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602449/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1475069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1475069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

手语是治疗听力损失的主要康复方法之一。像任何其他语言一样,地理位置也会影响标志的制作方式。特别是在哥伦比亚,重听人群缺乏哥伦比亚手语教育,主要原因是教育部门的口译人员数量减少。为了帮助缓解这一问题,机器学习与数据手套或计算机视觉技术相结合,已经成为标识翻译系统和教育工具的附件,然而,在哥伦比亚,这种解决方案的存在是稀缺的。另一方面,像NAO这样的人形机器人在用于支持学习过程时显示出显著的效果。本文提出了一个活动设计的绩效评估,以支持哥伦比亚手语中所有11个基于颜色的符号的学习过程。其中包括一种评价方法,通过用户交互激活两种模式,第一种模式允许选择要评价的颜色标志,第二种模式随机决定要评价的颜色标志。为了实现这一点,使用MediaPipe工具提取躯干和手的坐标,这是神经网络的输入。通过连续运行两种场景对神经网络的性能进行评价,一种是计算机网络摄像头的视频采集,F1总分为91.6%,预测时间为85.2 m,另一种是NAO H25 V6摄像头的无线视频流,F1总分为93.8%,预测时间为2.29 s。此外,我们利用了NAO H25 V6的联合冗余,因为有了它的25个自由度,我们能够使用手势来创建非语言的人机交互,这在未来的工作中可能很有用,我们想要在聋人社区实现这个活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning signs with NAO: humanoid robot as a tool for helping to learn Colombian Sign Language.

Sign languages are one of the main rehabilitation methods for dealing with hearing loss. Like any other language, the geographical location will influence on how signs are made. Particularly in Colombia, the hard of hearing population is lacking from education in the Colombian Sign Language, mainly due of the reduce number of interpreters in the educational sector. To help mitigate this problem, Machine Learning binded to data gloves or Computer Vision technologies have emerged to be the accessory of sign translation systems and educational tools, however, in Colombia the presence of this solutions is scarce. On the other hand, humanoid robots such as the NAO have shown significant results when used to support a learning process. This paper proposes a performance evaluation for the design of an activity to support the learning process of all the 11 color-based signs from the Colombian Sign Language. Which consists of an evaluation method with two modes activated through user interaction, the first mode will allow to choose the color sign to be evaluated, and the second will decide randomly the color sign. To achieve this, MediaPipe tool was used to extract torso and hand coordinates, which were the input for a Neural Network. The performance of the Neural Network was evaluated running continuously in two scenarios, first, video capture from the webcam of the computer which showed an overall F1 score of 91.6% and a prediction time of 85.2 m, second, wireless video streaming with NAO H25 V6 camera which had an F1 score of 93.8% and a prediction time of 2.29 s. In addition, we took advantage of the joint redundancy that NAO H25 V6 has, since with its 25 degrees of freedom we were able to use gestures that created nonverbal human-robot interactions, which may be useful in future works where we want to implement this activity with a deaf community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
期刊最新文献
Advanced robotics for automated EV battery testing using electrochemical impedance spectroscopy. Pig tongue soft robot mimicking intrinsic tongue muscle structure. A fast monocular 6D pose estimation method for textureless objects based on perceptual hashing and template matching. Semantic segmentation using synthetic images of underwater marine-growth. A comparative psychological evaluation of a robotic avatar in Dubai and Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1