利用大型语言模型从临床文献中提取国际疾病分类代码。

IF 2.1 2区 医学 Q4 MEDICAL INFORMATICS Applied Clinical Informatics Pub Date : 2024-11-28 DOI:10.1055/a-2491-3872
Ashley Simmons, Kullaya Takkavatakarn, Megan McDougal, Brian Dilcher, Jami Pincavitch, Lukas Meadows, Justin Kauffman, Eyal Klang, Rebecca Wig, Gordon Stephen Smith, Ali Soroush, Robert Freeman, Donald Apakama, Alexander Charney, Roopa Kohli-Seth, Girish Nadkarni, Ankit Sakhuja
{"title":"利用大型语言模型从临床文献中提取国际疾病分类代码。","authors":"Ashley Simmons, Kullaya Takkavatakarn, Megan McDougal, Brian Dilcher, Jami Pincavitch, Lukas Meadows, Justin Kauffman, Eyal Klang, Rebecca Wig, Gordon Stephen Smith, Ali Soroush, Robert Freeman, Donald Apakama, Alexander Charney, Roopa Kohli-Seth, Girish Nadkarni, Ankit Sakhuja","doi":"10.1055/a-2491-3872","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Large language models (LLMs) have shown promise in various professional fields, including medicine and law. However, their performance in highly specialized tasks, such as extracting ICD-10-CM codes from patient notes, remains underexplored.</p><p><strong>Objective: </strong>The primary objective was to evaluate and compare the performance of ICD-10-CM code extraction by different LLMs with that of human coder.</p><p><strong>Methods: </strong>We evaluated performance of six LLMs (GPT-3.5, GPT-4, Claude 2.1, Claude 3, Gemini Advanced, and Llama 2-70b) in extracting ICD-10-CM codes against human coder. We used deidentified inpatient notes from American Health Information Management Association Vlab authentic patient cases for this study. We calculated percent agreement and Cohen's kappa values to assess the agreement between LLMs and human coder. We then identified reasons for discrepancies in code extraction by LLMs in a 10% random subset.</p><p><strong>Results: </strong>Among 50 inpatient notes, human coder extracted 165 unique ICD-10-CM codes. LLMs extracted significantly higher number of unique ICD-10-CM codes than human coder, with Llama 2-70b extracting most (658) and Gemini Advanced the least (221). GPT-4 achieved highest percent agreement with human coder at 15.2%, followed by Claude 3 (12.7%) and GPT-3.5 (12.4%). Cohen's kappa values indicated minimal to no agreement, ranging from -0.02 to 0.01. When focusing on primary diagnosis, Claude 3 achieved highest percent agreement (26%) and kappa value (0.25). Reasons for discrepancies in extraction of codes varied amongst LLMs and included extraction of codes for diagnoses not confirmed by providers (60% with GPT-4), extraction of non-specific codes (25% with GPT-3.5), extraction of codes for signs and symptoms despite presence of more specific diagnosis (22% with Claude-2.1) and hallucinations (35% with Claude-2.1).</p><p><strong>Conclusions: </strong>Current LLMs have poor performance in extraction of ICD-10-CM codes from inpatient notes when compared against the human coder.</p>","PeriodicalId":48956,"journal":{"name":"Applied Clinical Informatics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting International Classification of Diseases Codes from Clinical Documentation using Large Language Models.\",\"authors\":\"Ashley Simmons, Kullaya Takkavatakarn, Megan McDougal, Brian Dilcher, Jami Pincavitch, Lukas Meadows, Justin Kauffman, Eyal Klang, Rebecca Wig, Gordon Stephen Smith, Ali Soroush, Robert Freeman, Donald Apakama, Alexander Charney, Roopa Kohli-Seth, Girish Nadkarni, Ankit Sakhuja\",\"doi\":\"10.1055/a-2491-3872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Large language models (LLMs) have shown promise in various professional fields, including medicine and law. However, their performance in highly specialized tasks, such as extracting ICD-10-CM codes from patient notes, remains underexplored.</p><p><strong>Objective: </strong>The primary objective was to evaluate and compare the performance of ICD-10-CM code extraction by different LLMs with that of human coder.</p><p><strong>Methods: </strong>We evaluated performance of six LLMs (GPT-3.5, GPT-4, Claude 2.1, Claude 3, Gemini Advanced, and Llama 2-70b) in extracting ICD-10-CM codes against human coder. We used deidentified inpatient notes from American Health Information Management Association Vlab authentic patient cases for this study. We calculated percent agreement and Cohen's kappa values to assess the agreement between LLMs and human coder. We then identified reasons for discrepancies in code extraction by LLMs in a 10% random subset.</p><p><strong>Results: </strong>Among 50 inpatient notes, human coder extracted 165 unique ICD-10-CM codes. LLMs extracted significantly higher number of unique ICD-10-CM codes than human coder, with Llama 2-70b extracting most (658) and Gemini Advanced the least (221). GPT-4 achieved highest percent agreement with human coder at 15.2%, followed by Claude 3 (12.7%) and GPT-3.5 (12.4%). Cohen's kappa values indicated minimal to no agreement, ranging from -0.02 to 0.01. When focusing on primary diagnosis, Claude 3 achieved highest percent agreement (26%) and kappa value (0.25). Reasons for discrepancies in extraction of codes varied amongst LLMs and included extraction of codes for diagnoses not confirmed by providers (60% with GPT-4), extraction of non-specific codes (25% with GPT-3.5), extraction of codes for signs and symptoms despite presence of more specific diagnosis (22% with Claude-2.1) and hallucinations (35% with Claude-2.1).</p><p><strong>Conclusions: </strong>Current LLMs have poor performance in extraction of ICD-10-CM codes from inpatient notes when compared against the human coder.</p>\",\"PeriodicalId\":48956,\"journal\":{\"name\":\"Applied Clinical Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clinical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2491-3872\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clinical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2491-3872","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:大型语言模型(Large language models, llm)在包括医学和法律在内的各个专业领域都显示出前景。然而,它们在高度专业化任务中的表现,如从患者笔记中提取ICD-10-CM代码,仍未得到充分探索。目的:主要目的是评价和比较不同LLMs提取ICD-10-CM编码与人类编码的性能。方法:我们评估了6个LLMs (GPT-3.5、GPT-4、Claude 2.1、Claude 3、Gemini Advanced和Llama 2-70b)在提取ICD-10-CM编码中的性能。我们使用来自美国健康信息管理协会的住院病人记录和真实病例进行研究。我们计算了百分比协议和科恩的kappa值来评估法学硕士和人类编码员之间的协议。然后,我们在10%的随机子集中确定了llm代码提取差异的原因。结果:在50份住院病历中,人工编码员提取出165个独特的ICD-10-CM编码。LLMs提取的唯一ICD-10-CM编码数量明显高于人类编码器,其中Llama 2-70b提取最多(658),Gemini Advanced提取最少(221)。GPT-4与人类编码器的一致性最高,为15.2%,其次是Claude 3(12.7%)和GPT-3.5(12.4%)。Cohen的kappa值显示最小或没有一致,范围从-0.02到0.01。当专注于初级诊断时,Claude 3达到了最高的一致性百分比(26%)和kappa值(0.25)。不同llm在代码提取方面存在差异的原因各不相同,包括为未经提供者确认的诊断提取代码(60%使用GPT-4),提取非特异性代码(25%使用GPT-3.5),提取体征和症状代码,尽管存在更具体的诊断(22%使用Claude-2.1)和幻觉(35%使用Claude-2.1)。结论:与人工编码器相比,目前LLMs在从住院病历中提取ICD-10-CM编码方面表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting International Classification of Diseases Codes from Clinical Documentation using Large Language Models.

Background: Large language models (LLMs) have shown promise in various professional fields, including medicine and law. However, their performance in highly specialized tasks, such as extracting ICD-10-CM codes from patient notes, remains underexplored.

Objective: The primary objective was to evaluate and compare the performance of ICD-10-CM code extraction by different LLMs with that of human coder.

Methods: We evaluated performance of six LLMs (GPT-3.5, GPT-4, Claude 2.1, Claude 3, Gemini Advanced, and Llama 2-70b) in extracting ICD-10-CM codes against human coder. We used deidentified inpatient notes from American Health Information Management Association Vlab authentic patient cases for this study. We calculated percent agreement and Cohen's kappa values to assess the agreement between LLMs and human coder. We then identified reasons for discrepancies in code extraction by LLMs in a 10% random subset.

Results: Among 50 inpatient notes, human coder extracted 165 unique ICD-10-CM codes. LLMs extracted significantly higher number of unique ICD-10-CM codes than human coder, with Llama 2-70b extracting most (658) and Gemini Advanced the least (221). GPT-4 achieved highest percent agreement with human coder at 15.2%, followed by Claude 3 (12.7%) and GPT-3.5 (12.4%). Cohen's kappa values indicated minimal to no agreement, ranging from -0.02 to 0.01. When focusing on primary diagnosis, Claude 3 achieved highest percent agreement (26%) and kappa value (0.25). Reasons for discrepancies in extraction of codes varied amongst LLMs and included extraction of codes for diagnoses not confirmed by providers (60% with GPT-4), extraction of non-specific codes (25% with GPT-3.5), extraction of codes for signs and symptoms despite presence of more specific diagnosis (22% with Claude-2.1) and hallucinations (35% with Claude-2.1).

Conclusions: Current LLMs have poor performance in extraction of ICD-10-CM codes from inpatient notes when compared against the human coder.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Clinical Informatics
Applied Clinical Informatics MEDICAL INFORMATICS-
CiteScore
4.60
自引率
24.10%
发文量
132
期刊介绍: ACI is the third Schattauer journal dealing with biomedical and health informatics. It perfectly complements our other journals Öffnet internen Link im aktuellen FensterMethods of Information in Medicine and the Öffnet internen Link im aktuellen FensterYearbook of Medical Informatics. The Yearbook of Medical Informatics being the “Milestone” or state-of-the-art journal and Methods of Information in Medicine being the “Science and Research” journal of IMIA, ACI intends to be the “Practical” journal of IMIA.
期刊最新文献
Sharing a Hybrid EHR + FHIR CDS Tool Across Health Systems: Automating Smoking Cessation for Pediatric Caregivers. Application of an Externally Developed Algorithm to Identify Research Cases and Controls from Electronic Health Record Data: Failures and Successes. Association of an HIV-Prediction Model with Uptake of Pre-Exposure Prophylaxis (PrEP). Pediatric Predictive Artificial Intelligence Implemented in Clinical Practice from 2010-2021: A Systematic Review. Exploring Mixed Reality for Patient Education in Cerebral Angiograms: A Pilot Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1