{"title":"颗粒破碎对岩石滑坡沉积形成的影响:来自刚性有限元模型的见解","authors":"Hui Jiang, Jing-Jing Zhu, Wen-Jie Zhang, Jin-Ting Wang, Yuan-De Zhou, Xiu-Li Du","doi":"10.1007/s10064-024-04023-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to investigate the influence of particle breakage on the dynamics and deposition of rockslides. A rigid-body finite element formulation incorporating bond beam element is proposed to model rock breakage behaviors. This approach enables simulations of particle fragment rolling, collisions between adjacent pieces, and impacts of pieces with the bedrock. Numerical analyses were conducted considering the variations in volumes, breakage modes, breakage efficiency, and the friction coefficient of bedrock surfaces. Simulation results demonstrate a negative linear correlation between the runout distance and the volume of rock blocks. Incorporating fragmentation effects, this study reveals that the breakage efficiency of maternal rock blocks significantly influences the energy dissipation process and the downslope movement of rockslides. Despite variations in breakage modes leading to distinct deposit configurations, run-out distances remain basically consistent. Analysis of block contributions from various source locations indicates that the longitudinal spreading of the deposit primarily depends on blocks distributed on the periphery of the rock mass.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of particle breakage on rockslide deposition formations: insights from rigid finite element modelling\",\"authors\":\"Hui Jiang, Jing-Jing Zhu, Wen-Jie Zhang, Jin-Ting Wang, Yuan-De Zhou, Xiu-Li Du\",\"doi\":\"10.1007/s10064-024-04023-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to investigate the influence of particle breakage on the dynamics and deposition of rockslides. A rigid-body finite element formulation incorporating bond beam element is proposed to model rock breakage behaviors. This approach enables simulations of particle fragment rolling, collisions between adjacent pieces, and impacts of pieces with the bedrock. Numerical analyses were conducted considering the variations in volumes, breakage modes, breakage efficiency, and the friction coefficient of bedrock surfaces. Simulation results demonstrate a negative linear correlation between the runout distance and the volume of rock blocks. Incorporating fragmentation effects, this study reveals that the breakage efficiency of maternal rock blocks significantly influences the energy dissipation process and the downslope movement of rockslides. Despite variations in breakage modes leading to distinct deposit configurations, run-out distances remain basically consistent. Analysis of block contributions from various source locations indicates that the longitudinal spreading of the deposit primarily depends on blocks distributed on the periphery of the rock mass.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-04023-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04023-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effects of particle breakage on rockslide deposition formations: insights from rigid finite element modelling
This paper aims to investigate the influence of particle breakage on the dynamics and deposition of rockslides. A rigid-body finite element formulation incorporating bond beam element is proposed to model rock breakage behaviors. This approach enables simulations of particle fragment rolling, collisions between adjacent pieces, and impacts of pieces with the bedrock. Numerical analyses were conducted considering the variations in volumes, breakage modes, breakage efficiency, and the friction coefficient of bedrock surfaces. Simulation results demonstrate a negative linear correlation between the runout distance and the volume of rock blocks. Incorporating fragmentation effects, this study reveals that the breakage efficiency of maternal rock blocks significantly influences the energy dissipation process and the downslope movement of rockslides. Despite variations in breakage modes leading to distinct deposit configurations, run-out distances remain basically consistent. Analysis of block contributions from various source locations indicates that the longitudinal spreading of the deposit primarily depends on blocks distributed on the periphery of the rock mass.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.