{"title":"疏水蛋白hyph16在平菇细胞壁形成中的生理功能。","authors":"Junxian Han , Moriyuki Kawauchi , Yuki Terauchi , Kenya Tsuji , Akira Yoshimi , Chihiro Tanaka , Takehito Nakazawa , Yoichi Honda","doi":"10.1016/j.fgb.2024.103943","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrophobins are small-secreted proteins with both hydrophobic and hydrophilic regions, enabling the mycelium to break through the air-medium interface by reducing the medium surface tension. Over 20 putative hydrophobin-encoding genes have been predicted in the agaricomycete <em>Pleurotus ostreatus</em>. Three hydrophobin-encoding genes, <em>vmh2</em>, <em>vmh3</em>, and <em>hydph1</em>6, were predominantly expressed in the vegetative mycelium. Despite these common properties, we have previously demonstrated the distinct functions of Vmh2 and Vmh3 in environmental stress resistance. In this study, we focused on <em>hydph16</em> and found that Δ<em>hydph16</em> strains had sparser aerial mycelium than control strains. The cell wall thickness of Δ<em>hydph16</em> strains reduced by 40 % compared to that of control strains, but no significant differences were found in the relative chitin and glucan percentages or relative putative cell wall synthesis-related gene expression levels. Furthermore, unlike <em>vmh2</em> and <em>vmh3</em>, <em>hydph16</em> deletion did not change the hydrophobicity of the aerial mycelium. This study is the first to report that the lack of hydrophobin can lead to a significant change in aerial hyphae cell wall formation without altering the major cell wall polysaccharide composition. Additionally, this study revealed multiple roles for Hydph16, distinct from those of other highly expressed hydrophobins, Vmh2 and Vmh3. These results suggested that agaricomycetes, including <em>P. ostreatu</em>s, have evolved to possess multiple hydrophobins with different functions.</div></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"176 ","pages":"Article 103943"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological function of hydrophobin Hydph16 in cell wall formation in agaricomycete Pleurotus ostreatus\",\"authors\":\"Junxian Han , Moriyuki Kawauchi , Yuki Terauchi , Kenya Tsuji , Akira Yoshimi , Chihiro Tanaka , Takehito Nakazawa , Yoichi Honda\",\"doi\":\"10.1016/j.fgb.2024.103943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrophobins are small-secreted proteins with both hydrophobic and hydrophilic regions, enabling the mycelium to break through the air-medium interface by reducing the medium surface tension. Over 20 putative hydrophobin-encoding genes have been predicted in the agaricomycete <em>Pleurotus ostreatus</em>. Three hydrophobin-encoding genes, <em>vmh2</em>, <em>vmh3</em>, and <em>hydph1</em>6, were predominantly expressed in the vegetative mycelium. Despite these common properties, we have previously demonstrated the distinct functions of Vmh2 and Vmh3 in environmental stress resistance. In this study, we focused on <em>hydph16</em> and found that Δ<em>hydph16</em> strains had sparser aerial mycelium than control strains. The cell wall thickness of Δ<em>hydph16</em> strains reduced by 40 % compared to that of control strains, but no significant differences were found in the relative chitin and glucan percentages or relative putative cell wall synthesis-related gene expression levels. Furthermore, unlike <em>vmh2</em> and <em>vmh3</em>, <em>hydph16</em> deletion did not change the hydrophobicity of the aerial mycelium. This study is the first to report that the lack of hydrophobin can lead to a significant change in aerial hyphae cell wall formation without altering the major cell wall polysaccharide composition. Additionally, this study revealed multiple roles for Hydph16, distinct from those of other highly expressed hydrophobins, Vmh2 and Vmh3. These results suggested that agaricomycetes, including <em>P. ostreatu</em>s, have evolved to possess multiple hydrophobins with different functions.</div></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\"176 \",\"pages\":\"Article 103943\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S108718452400080X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S108718452400080X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Physiological function of hydrophobin Hydph16 in cell wall formation in agaricomycete Pleurotus ostreatus
Hydrophobins are small-secreted proteins with both hydrophobic and hydrophilic regions, enabling the mycelium to break through the air-medium interface by reducing the medium surface tension. Over 20 putative hydrophobin-encoding genes have been predicted in the agaricomycete Pleurotus ostreatus. Three hydrophobin-encoding genes, vmh2, vmh3, and hydph16, were predominantly expressed in the vegetative mycelium. Despite these common properties, we have previously demonstrated the distinct functions of Vmh2 and Vmh3 in environmental stress resistance. In this study, we focused on hydph16 and found that Δhydph16 strains had sparser aerial mycelium than control strains. The cell wall thickness of Δhydph16 strains reduced by 40 % compared to that of control strains, but no significant differences were found in the relative chitin and glucan percentages or relative putative cell wall synthesis-related gene expression levels. Furthermore, unlike vmh2 and vmh3, hydph16 deletion did not change the hydrophobicity of the aerial mycelium. This study is the first to report that the lack of hydrophobin can lead to a significant change in aerial hyphae cell wall formation without altering the major cell wall polysaccharide composition. Additionally, this study revealed multiple roles for Hydph16, distinct from those of other highly expressed hydrophobins, Vmh2 and Vmh3. These results suggested that agaricomycetes, including P. ostreatus, have evolved to possess multiple hydrophobins with different functions.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.