CLMS:通过无源持续学习弥合医学成像分割领域的差距,实现强大的知识转移和适应

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2024-11-24 DOI:10.1016/j.media.2024.103404
Weilu Li , Yun Zhang , Hao Zhou, Wenhan Yang, Zhi Xie, Yao He
{"title":"CLMS:通过无源持续学习弥合医学成像分割领域的差距,实现强大的知识转移和适应","authors":"Weilu Li ,&nbsp;Yun Zhang ,&nbsp;Hao Zhou,&nbsp;Wenhan Yang,&nbsp;Zhi Xie,&nbsp;Yao He","doi":"10.1016/j.media.2024.103404","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning shows promise for medical image segmentation but suffers performance declines when applied to diverse healthcare sites due to data discrepancies among the different sites. Translating deep learning models to new clinical environments is challenging, especially when the original source data used for training is unavailable due to privacy restrictions. Source-free domain adaptation (SFDA) aims to adapt models to new unlabeled target domains without requiring access to the original source data. However, existing SFDA methods face challenges such as error propagation, misalignment of visual and structural features, and inability to preserve source knowledge. This paper introduces Continual Learning Multi-Scale domain adaptation (CLMS), an end-to-end SFDA framework integrating multi-scale reconstruction, continual learning, and style alignment to bridge domain gaps across medical sites using only unlabeled target data or publicly available data. Compared to the current state-of-the-art methods, CLMS consistently and significantly achieved top performance for different tasks, including prostate MRI segmentation (improved Dice of 10.87 %), colonoscopy polyp segmentation (improved Dice of 17.73 %), and plus disease classification from retinal images (improved AUC of 11.19 %). Crucially, CLMS preserved source knowledge for all the tasks, avoiding catastrophic forgetting. CLMS demonstrates a promising solution for translating deep learning models to new clinical imaging domains towards safe, reliable deployment across diverse healthcare settings.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"100 ","pages":"Article 103404"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLMS: Bridging domain gaps in medical imaging segmentation with source-free continual learning for robust knowledge transfer and adaptation\",\"authors\":\"Weilu Li ,&nbsp;Yun Zhang ,&nbsp;Hao Zhou,&nbsp;Wenhan Yang,&nbsp;Zhi Xie,&nbsp;Yao He\",\"doi\":\"10.1016/j.media.2024.103404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning shows promise for medical image segmentation but suffers performance declines when applied to diverse healthcare sites due to data discrepancies among the different sites. Translating deep learning models to new clinical environments is challenging, especially when the original source data used for training is unavailable due to privacy restrictions. Source-free domain adaptation (SFDA) aims to adapt models to new unlabeled target domains without requiring access to the original source data. However, existing SFDA methods face challenges such as error propagation, misalignment of visual and structural features, and inability to preserve source knowledge. This paper introduces Continual Learning Multi-Scale domain adaptation (CLMS), an end-to-end SFDA framework integrating multi-scale reconstruction, continual learning, and style alignment to bridge domain gaps across medical sites using only unlabeled target data or publicly available data. Compared to the current state-of-the-art methods, CLMS consistently and significantly achieved top performance for different tasks, including prostate MRI segmentation (improved Dice of 10.87 %), colonoscopy polyp segmentation (improved Dice of 17.73 %), and plus disease classification from retinal images (improved AUC of 11.19 %). Crucially, CLMS preserved source knowledge for all the tasks, avoiding catastrophic forgetting. CLMS demonstrates a promising solution for translating deep learning models to new clinical imaging domains towards safe, reliable deployment across diverse healthcare settings.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"100 \",\"pages\":\"Article 103404\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841524003293\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524003293","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度学习显示了医学图像分割的前景,但由于不同站点之间的数据差异,当应用于不同的医疗保健站点时,性能会下降。将深度学习模型转化为新的临床环境是具有挑战性的,特别是当用于训练的原始源数据由于隐私限制而不可用时。无源域自适应(SFDA)旨在使模型适应新的未标记的目标域,而不需要访问原始源数据。然而,现有的SFDA方法面临着诸如误差传播、视觉和结构特征不一致以及无法保存源知识等挑战。本文介绍了持续学习多尺度域适应(CLMS),这是一个端到端的SFDA框架,集成了多尺度重建、持续学习和风格对齐,仅使用未标记的目标数据或公开可用的数据来弥合医疗站点之间的域差距。与目前最先进的方法相比,CLMS在不同任务上一致且显著地取得了最佳性能,包括前列腺MRI分割(提高了10.87%的Dice),结肠镜息肉分割(提高了17.73%的Dice),以及视网膜图像的疾病分类(提高了11.19%的AUC)。关键是,CLMS保留了所有任务的源知识,避免了灾难性遗忘。CLMS展示了一种很有前途的解决方案,可将深度学习模型转换为新的临床成像领域,从而在各种医疗保健环境中安全、可靠地部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CLMS: Bridging domain gaps in medical imaging segmentation with source-free continual learning for robust knowledge transfer and adaptation
Deep learning shows promise for medical image segmentation but suffers performance declines when applied to diverse healthcare sites due to data discrepancies among the different sites. Translating deep learning models to new clinical environments is challenging, especially when the original source data used for training is unavailable due to privacy restrictions. Source-free domain adaptation (SFDA) aims to adapt models to new unlabeled target domains without requiring access to the original source data. However, existing SFDA methods face challenges such as error propagation, misalignment of visual and structural features, and inability to preserve source knowledge. This paper introduces Continual Learning Multi-Scale domain adaptation (CLMS), an end-to-end SFDA framework integrating multi-scale reconstruction, continual learning, and style alignment to bridge domain gaps across medical sites using only unlabeled target data or publicly available data. Compared to the current state-of-the-art methods, CLMS consistently and significantly achieved top performance for different tasks, including prostate MRI segmentation (improved Dice of 10.87 %), colonoscopy polyp segmentation (improved Dice of 17.73 %), and plus disease classification from retinal images (improved AUC of 11.19 %). Crucially, CLMS preserved source knowledge for all the tasks, avoiding catastrophic forgetting. CLMS demonstrates a promising solution for translating deep learning models to new clinical imaging domains towards safe, reliable deployment across diverse healthcare settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. SAF-IS: A spatial annotation free framework for instance segmentation of surgical tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1