一种新的多模态图方法在帕金森病的个性化进程建模和预测

IF 6.7 1区 医学 Q1 NEUROSCIENCES NPJ Parkinson's Disease Pub Date : 2024-12-01 DOI:10.1038/s41531-024-00832-w
Jie Lian, Xufang Luo, Caihua Shan, Dongqi Han, Chencheng Zhang, Varut Vardhanabhuti, Dongsheng Li, Lili Qiu
{"title":"一种新的多模态图方法在帕金森病的个性化进程建模和预测","authors":"Jie Lian, Xufang Luo, Caihua Shan, Dongqi Han, Chencheng Zhang, Varut Vardhanabhuti, Dongsheng Li, Lili Qiu","doi":"10.1038/s41531-024-00832-w","DOIUrl":null,"url":null,"abstract":"<p>Parkinson’s disease (PD) is a complex neurological disorder characterized by dopaminergic neuron degeneration, leading to diverse motor and non-motor impairments. This variability complicates accurate progression modelling and early-stage prediction. Traditional classification methods based on clinical symptoms are often limited by disease heterogeneity. This study introduces an graph-based interpretable personalized progression method, utilizing data from the Parkinson’s Progression Markers Initiative (PPMI) and Stroke Parkinson’s Disease Biomarker Program (PDBP). Our approach integrates multimodal inter-individual and intra-individual data, including clinical assessments, MRI, and genetic information to make multi-dimension predictions. Validated using the PDBP dataset from 12 to 36 months, our AdaMedGraph method demonstrated strong performance, achieving AUC values of 0.748 and 0.714 for the 12-month Hoehn and Yahr Scale and Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) III on the PPMI test set. Ablation analysis reveals the importance of baseline clinical assessment predictors. This novel framework improves personalized care and offers insights into unique disease trajectories in PD patients.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"18 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized progression modelling and prediction in Parkinson’s disease with a novel multi-modal graph approach\",\"authors\":\"Jie Lian, Xufang Luo, Caihua Shan, Dongqi Han, Chencheng Zhang, Varut Vardhanabhuti, Dongsheng Li, Lili Qiu\",\"doi\":\"10.1038/s41531-024-00832-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Parkinson’s disease (PD) is a complex neurological disorder characterized by dopaminergic neuron degeneration, leading to diverse motor and non-motor impairments. This variability complicates accurate progression modelling and early-stage prediction. Traditional classification methods based on clinical symptoms are often limited by disease heterogeneity. This study introduces an graph-based interpretable personalized progression method, utilizing data from the Parkinson’s Progression Markers Initiative (PPMI) and Stroke Parkinson’s Disease Biomarker Program (PDBP). Our approach integrates multimodal inter-individual and intra-individual data, including clinical assessments, MRI, and genetic information to make multi-dimension predictions. Validated using the PDBP dataset from 12 to 36 months, our AdaMedGraph method demonstrated strong performance, achieving AUC values of 0.748 and 0.714 for the 12-month Hoehn and Yahr Scale and Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) III on the PPMI test set. Ablation analysis reveals the importance of baseline clinical assessment predictors. This novel framework improves personalized care and offers insights into unique disease trajectories in PD patients.</p>\",\"PeriodicalId\":19706,\"journal\":{\"name\":\"NPJ Parkinson's Disease\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41531-024-00832-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-024-00832-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种以多巴胺能神经元变性为特征的复杂神经系统疾病,可导致多种运动和非运动损伤。这种可变性使准确的级数建模和早期预测变得复杂。传统的基于临床症状的分类方法往往受到疾病异质性的限制。本研究介绍了一种基于图的可解释的个性化进展方法,利用来自帕金森病进展标记计划(PPMI)和中风帕金森病生物标记计划(PDBP)的数据。我们的方法整合了个体间和个体内的多模式数据,包括临床评估、MRI和遗传信息,以进行多维预测。使用12至36个月的PDBP数据集进行验证,我们的AdaMedGraph方法表现出很强的性能,在PPMI测试集上,12个月的Hoehn和Yahr量表和运动障碍协会赞助的统一帕金森病评定量表(MDS-UPDRS) III的AUC值分别为0.748和0.714。消融分析揭示了基线临床评估预测因子的重要性。这种新的框架改善了个性化护理,并为PD患者独特的疾病轨迹提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalized progression modelling and prediction in Parkinson’s disease with a novel multi-modal graph approach

Parkinson’s disease (PD) is a complex neurological disorder characterized by dopaminergic neuron degeneration, leading to diverse motor and non-motor impairments. This variability complicates accurate progression modelling and early-stage prediction. Traditional classification methods based on clinical symptoms are often limited by disease heterogeneity. This study introduces an graph-based interpretable personalized progression method, utilizing data from the Parkinson’s Progression Markers Initiative (PPMI) and Stroke Parkinson’s Disease Biomarker Program (PDBP). Our approach integrates multimodal inter-individual and intra-individual data, including clinical assessments, MRI, and genetic information to make multi-dimension predictions. Validated using the PDBP dataset from 12 to 36 months, our AdaMedGraph method demonstrated strong performance, achieving AUC values of 0.748 and 0.714 for the 12-month Hoehn and Yahr Scale and Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) III on the PPMI test set. Ablation analysis reveals the importance of baseline clinical assessment predictors. This novel framework improves personalized care and offers insights into unique disease trajectories in PD patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Parkinson's Disease
NPJ Parkinson's Disease Medicine-Neurology (clinical)
CiteScore
9.80
自引率
5.70%
发文量
156
审稿时长
11 weeks
期刊介绍: npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.
期刊最新文献
VisionMD: an open-source tool for video-based analysis of motor function in movement disorders Author Correction: MRgFUS subthalamotomy in Parkinson's disease: an approach aimed at minimizing Lesion Volume. Clinically probable RBD is an early predictor of malignant non-motor Parkinson’s disease phenotypes Morphological and functional decline of the SNc in a model of progressive parkinsonism Multiomics approach identifies dysregulated lipidomic and proteomic networks in Parkinson’s disease patients mutated in TMEM175
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1