应用条件神经核场预测手术室直立关节脊柱形态

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2024-11-27 DOI:10.1016/j.media.2024.103400
Sylvain Thibeault , Marjolaine Roy-Beaudry , Stefan Parent , Samuel Kadoury
{"title":"应用条件神经核场预测手术室直立关节脊柱形态","authors":"Sylvain Thibeault ,&nbsp;Marjolaine Roy-Beaudry ,&nbsp;Stefan Parent ,&nbsp;Samuel Kadoury","doi":"10.1016/j.media.2024.103400","DOIUrl":null,"url":null,"abstract":"<div><div>Anterior vertebral tethering (AVT) is a non-invasive spine surgery technique, treating severe spine deformations and preserving lower back mobility. However, patient positioning and surgical strategies greatly influences postoperative results. Predicting the upright geometry from pediatric spines is needed to optimize patient positioning in the operating room (OR) and improve surgical outcomes, but remains a complex task due to immature bone properties. We propose a framework used in the OR predicting the upright spine geometry at the first visit following surgery in idiopathic scoliosis patients. The approach first creates a 3D model of the spine while the patient is on the operating table. For this, multiview Transformers that combine images from different viewpoints are used to generate the intraoperative pose. The postoperative upright shape is then predicted on-the-fly using implicit neural fields, which are trained from geometries at different time points and conditioned with surgical parameters. A Signed Distance Function for shape constellations is used to handle the variability in spine appearance, capturing a disentangled latent domain of the articulation vectors, with separate encoding vectors representing both articulation and shape parameters. A regularization criterion based on a pre-trained group-wise trajectory of spine transformations generates complete spine models. A training set of 652 patients with 3D models was used to train the model, tested on a distinct cohort of 83 surgical patients. The framework based on neural kernels predicted upright 3D geometries with a mean 3D error of <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>mm</mi></mrow></math></span> in landmarks points, and IoU of 95.9% in vertebral shapes when compared to actual postop models, falling within the acceptable margins of error below 2 mm.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"100 ","pages":"Article 103400"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the upright articulated spine shape in the operating room using conditioned neural kernel fields\",\"authors\":\"Sylvain Thibeault ,&nbsp;Marjolaine Roy-Beaudry ,&nbsp;Stefan Parent ,&nbsp;Samuel Kadoury\",\"doi\":\"10.1016/j.media.2024.103400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anterior vertebral tethering (AVT) is a non-invasive spine surgery technique, treating severe spine deformations and preserving lower back mobility. However, patient positioning and surgical strategies greatly influences postoperative results. Predicting the upright geometry from pediatric spines is needed to optimize patient positioning in the operating room (OR) and improve surgical outcomes, but remains a complex task due to immature bone properties. We propose a framework used in the OR predicting the upright spine geometry at the first visit following surgery in idiopathic scoliosis patients. The approach first creates a 3D model of the spine while the patient is on the operating table. For this, multiview Transformers that combine images from different viewpoints are used to generate the intraoperative pose. The postoperative upright shape is then predicted on-the-fly using implicit neural fields, which are trained from geometries at different time points and conditioned with surgical parameters. A Signed Distance Function for shape constellations is used to handle the variability in spine appearance, capturing a disentangled latent domain of the articulation vectors, with separate encoding vectors representing both articulation and shape parameters. A regularization criterion based on a pre-trained group-wise trajectory of spine transformations generates complete spine models. A training set of 652 patients with 3D models was used to train the model, tested on a distinct cohort of 83 surgical patients. The framework based on neural kernels predicted upright 3D geometries with a mean 3D error of <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>mm</mi></mrow></math></span> in landmarks points, and IoU of 95.9% in vertebral shapes when compared to actual postop models, falling within the acceptable margins of error below 2 mm.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"100 \",\"pages\":\"Article 103400\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841524003256\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524003256","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

前路椎体系扎术(AVT)是一种非侵入性脊柱手术技术,用于治疗严重的脊柱变形和保持下背部的活动能力。然而,患者体位和手术策略对术后结果有很大影响。预测儿童脊柱的直立几何形状是优化患者在手术室(OR)的定位和改善手术效果所必需的,但由于骨骼特性不成熟,这仍然是一项复杂的任务。我们提出了一个框架,用于OR预测直立脊柱几何形状在第一次访问后,特发性脊柱侧凸患者的手术。该方法首先在患者躺在手术台上时创建脊柱的3D模型。为此,结合不同视点图像的多视图变形器用于生成术中姿势。然后使用隐式神经场实时预测术后直立形状,隐式神经场从不同时间点的几何形状中训练,并以手术参数为条件。形状星座的签名距离函数用于处理脊柱外观的可变性,捕获关节向量的解纠缠潜在域,使用单独的编码向量表示关节和形状参数。基于预先训练的脊柱转换的组明智轨迹的正则化准则生成完整的脊柱模型。使用652名具有3D模型的患者的训练集来训练模型,并在83名外科患者的不同队列中进行测试。基于神经核的框架预测直立三维几何形状,在地标点上的平均3D误差为1.3±0.5mm,与实际的后支架模型相比,椎体形状的IoU为95.9%,在可接受的误差范围内低于2mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of the upright articulated spine shape in the operating room using conditioned neural kernel fields
Anterior vertebral tethering (AVT) is a non-invasive spine surgery technique, treating severe spine deformations and preserving lower back mobility. However, patient positioning and surgical strategies greatly influences postoperative results. Predicting the upright geometry from pediatric spines is needed to optimize patient positioning in the operating room (OR) and improve surgical outcomes, but remains a complex task due to immature bone properties. We propose a framework used in the OR predicting the upright spine geometry at the first visit following surgery in idiopathic scoliosis patients. The approach first creates a 3D model of the spine while the patient is on the operating table. For this, multiview Transformers that combine images from different viewpoints are used to generate the intraoperative pose. The postoperative upright shape is then predicted on-the-fly using implicit neural fields, which are trained from geometries at different time points and conditioned with surgical parameters. A Signed Distance Function for shape constellations is used to handle the variability in spine appearance, capturing a disentangled latent domain of the articulation vectors, with separate encoding vectors representing both articulation and shape parameters. A regularization criterion based on a pre-trained group-wise trajectory of spine transformations generates complete spine models. A training set of 652 patients with 3D models was used to train the model, tested on a distinct cohort of 83 surgical patients. The framework based on neural kernels predicted upright 3D geometries with a mean 3D error of 1.3±0.5mm in landmarks points, and IoU of 95.9% in vertebral shapes when compared to actual postop models, falling within the acceptable margins of error below 2 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. SAF-IS: A spatial annotation free framework for instance segmentation of surgical tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1