3D姿态临近投射:预测未来以改善现在

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Vision and Image Understanding Pub Date : 2024-11-20 DOI:10.1016/j.cviu.2024.104233
Alessandro Simoni , Francesco Marchetti , Guido Borghi , Federico Becattini , Lorenzo Seidenari , Roberto Vezzani , Alberto Del Bimbo
{"title":"3D姿态临近投射:预测未来以改善现在","authors":"Alessandro Simoni ,&nbsp;Francesco Marchetti ,&nbsp;Guido Borghi ,&nbsp;Federico Becattini ,&nbsp;Lorenzo Seidenari ,&nbsp;Roberto Vezzani ,&nbsp;Alberto Del Bimbo","doi":"10.1016/j.cviu.2024.104233","DOIUrl":null,"url":null,"abstract":"<div><div>Technologies to enable safe and effective collaboration and coexistence between humans and robots have gained significant importance in the last few years. A critical component useful for realizing this collaborative paradigm is the understanding of human and robot 3D poses using non-invasive systems. Therefore, in this paper, we propose a novel vision-based system leveraging depth data to accurately establish the 3D locations of skeleton joints. Specifically, we introduce the concept of Pose Nowcasting, denoting the capability of the proposed system to enhance its current pose estimation accuracy by jointly learning to forecast future poses. The experimental evaluation is conducted on two different datasets, providing accurate and real-time performance and confirming the validity of the proposed method on both the robotic and human scenarios.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"251 ","pages":"Article 104233"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Pose Nowcasting: Forecast the future to improve the present\",\"authors\":\"Alessandro Simoni ,&nbsp;Francesco Marchetti ,&nbsp;Guido Borghi ,&nbsp;Federico Becattini ,&nbsp;Lorenzo Seidenari ,&nbsp;Roberto Vezzani ,&nbsp;Alberto Del Bimbo\",\"doi\":\"10.1016/j.cviu.2024.104233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Technologies to enable safe and effective collaboration and coexistence between humans and robots have gained significant importance in the last few years. A critical component useful for realizing this collaborative paradigm is the understanding of human and robot 3D poses using non-invasive systems. Therefore, in this paper, we propose a novel vision-based system leveraging depth data to accurately establish the 3D locations of skeleton joints. Specifically, we introduce the concept of Pose Nowcasting, denoting the capability of the proposed system to enhance its current pose estimation accuracy by jointly learning to forecast future poses. The experimental evaluation is conducted on two different datasets, providing accurate and real-time performance and confirming the validity of the proposed method on both the robotic and human scenarios.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"251 \",\"pages\":\"Article 104233\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107731422400314X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107731422400314X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年中,使人类和机器人之间安全有效的协作和共存的技术变得非常重要。实现这种协作范例的一个关键组件是使用非侵入性系统理解人类和机器人的3D姿势。因此,在本文中,我们提出了一种新的基于视觉的系统,利用深度数据来准确地建立骨骼关节的三维位置。具体来说,我们引入了姿态临近投射的概念,表明系统能够通过联合学习预测未来姿态来提高当前姿态估计的精度。在两个不同的数据集上进行了实验评估,提供了准确和实时的性能,并验证了所提出方法在机器人和人类场景下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Pose Nowcasting: Forecast the future to improve the present
Technologies to enable safe and effective collaboration and coexistence between humans and robots have gained significant importance in the last few years. A critical component useful for realizing this collaborative paradigm is the understanding of human and robot 3D poses using non-invasive systems. Therefore, in this paper, we propose a novel vision-based system leveraging depth data to accurately establish the 3D locations of skeleton joints. Specifically, we introduce the concept of Pose Nowcasting, denoting the capability of the proposed system to enhance its current pose estimation accuracy by jointly learning to forecast future poses. The experimental evaluation is conducted on two different datasets, providing accurate and real-time performance and confirming the validity of the proposed method on both the robotic and human scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
期刊最新文献
Monocular per-object distance estimation with Masked Object Modeling Editorial Board Corrigendum to “LightSOD: Towards lightweight and efficient network for salient object detection” [J. Comput. Vis. Imag. Underst. 249 (2024) 104148] Guided image filtering-conventional to deep models: A review and evaluation study Learning to mask and permute visual tokens for Vision Transformer pre-training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1