人工湿地温室气体排放研究综述:以人工湿地种植策略和减排措施为重点

IF 6.3 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of water process engineering Pub Date : 2024-12-01 DOI:10.1016/j.jwpe.2024.106696
Qianyin Yuan , Jianjun Lian , Fei Yang , Maocai Shen , Yulai Wang , Qiaoping Kong , Bo Chen , Xiao Cai , Haocheng Tao , Haiming Wu
{"title":"人工湿地温室气体排放研究综述:以人工湿地种植策略和减排措施为重点","authors":"Qianyin Yuan ,&nbsp;Jianjun Lian ,&nbsp;Fei Yang ,&nbsp;Maocai Shen ,&nbsp;Yulai Wang ,&nbsp;Qiaoping Kong ,&nbsp;Bo Chen ,&nbsp;Xiao Cai ,&nbsp;Haocheng Tao ,&nbsp;Haiming Wu","doi":"10.1016/j.jwpe.2024.106696","DOIUrl":null,"url":null,"abstract":"<div><div>Constructed wetlands (CWs) are considered a cost-effective, energy-efficient, and multi-functional technology for sustainable wastewater treatment. However, CWs can also emit significant amounts of greenhouse gases (GHGs) during the treatment process, potentially contributing to environmental “secondary pollution.” As essential components of CWs, plants play a critical role in GHG emissions. This review provides a comprehensive analysis of GHGs emissions in CWs, focusing on the influence of plant species, species diversity, and harvesting practices. By examining 534 studies published in international journals indexed in the Web of Science Core Collection from 2009 to 2023, this paper highlights the impact of plant selection and management on GHGs emissions in CWs. Additionally, we summarize emission reduction strategies for CWs, offering insights for optimizing plant choices and management practices to minimize GHGs emissions, enhancing both environmental and ecological benefits.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"69 ","pages":"Article 106696"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review on greenhouse gas emissions from constructed wetlands: Focusing on effects of planting strategies and emission reduction measures\",\"authors\":\"Qianyin Yuan ,&nbsp;Jianjun Lian ,&nbsp;Fei Yang ,&nbsp;Maocai Shen ,&nbsp;Yulai Wang ,&nbsp;Qiaoping Kong ,&nbsp;Bo Chen ,&nbsp;Xiao Cai ,&nbsp;Haocheng Tao ,&nbsp;Haiming Wu\",\"doi\":\"10.1016/j.jwpe.2024.106696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructed wetlands (CWs) are considered a cost-effective, energy-efficient, and multi-functional technology for sustainable wastewater treatment. However, CWs can also emit significant amounts of greenhouse gases (GHGs) during the treatment process, potentially contributing to environmental “secondary pollution.” As essential components of CWs, plants play a critical role in GHG emissions. This review provides a comprehensive analysis of GHGs emissions in CWs, focusing on the influence of plant species, species diversity, and harvesting practices. By examining 534 studies published in international journals indexed in the Web of Science Core Collection from 2009 to 2023, this paper highlights the impact of plant selection and management on GHGs emissions in CWs. Additionally, we summarize emission reduction strategies for CWs, offering insights for optimizing plant choices and management practices to minimize GHGs emissions, enhancing both environmental and ecological benefits.</div></div>\",\"PeriodicalId\":17528,\"journal\":{\"name\":\"Journal of water process engineering\",\"volume\":\"69 \",\"pages\":\"Article 106696\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water process engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214714424019287\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424019287","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

人工湿地(CWs)被认为是一种具有成本效益、节能和多功能的可持续污水处理技术。然而,化粪池在处理过程中也会排放大量温室气体,可能会造成环境“二次污染”。植物作为温室气体的重要组成部分,在温室气体排放中起着至关重要的作用。本文综述了温室气体排放的综合分析,重点介绍了植物种类、物种多样性和收获方式的影响。通过对2009 - 2023年Web of Science Core Collection收录的国际期刊上发表的534篇论文的分析,重点分析了植物选择和管理对CWs温室气体排放的影响。此外,我们总结了化粪厂的减排策略,为优化工厂选择和管理实践提供见解,以最大限度地减少温室气体排放,提高环境和生态效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic review on greenhouse gas emissions from constructed wetlands: Focusing on effects of planting strategies and emission reduction measures
Constructed wetlands (CWs) are considered a cost-effective, energy-efficient, and multi-functional technology for sustainable wastewater treatment. However, CWs can also emit significant amounts of greenhouse gases (GHGs) during the treatment process, potentially contributing to environmental “secondary pollution.” As essential components of CWs, plants play a critical role in GHG emissions. This review provides a comprehensive analysis of GHGs emissions in CWs, focusing on the influence of plant species, species diversity, and harvesting practices. By examining 534 studies published in international journals indexed in the Web of Science Core Collection from 2009 to 2023, this paper highlights the impact of plant selection and management on GHGs emissions in CWs. Additionally, we summarize emission reduction strategies for CWs, offering insights for optimizing plant choices and management practices to minimize GHGs emissions, enhancing both environmental and ecological benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
期刊最新文献
Textile wastewater treatment using ternary hybrid nanocomposites of hexagonal NiO with MWCNT/GO Efficient fluconazole degradation by activating peroxymonosulfate with LDH-coated nickel foam: Synergism of radical and non-radical pathways Spatio-temporal analysis and prediction for raw water quality of drinking water source by improved RNN algorithm The mechanism of Co-based carbon felt flow-through cathode non-homogeneous electro-Fenton system for organic pollutants degradation Modification of waste printed circuit board substrates via FeN doping and their adsorption performance towards tetracyclines antibiotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1