在未重复的农场试验中比较处理方法的新方法

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Precision Agriculture Pub Date : 2024-12-02 DOI:10.1007/s11119-024-10206-0
M. Córdoba, P. Paccioretti, M. Balzarini
{"title":"在未重复的农场试验中比较处理方法的新方法","authors":"M. Córdoba, P. Paccioretti, M. Balzarini","doi":"10.1007/s11119-024-10206-0","DOIUrl":null,"url":null,"abstract":"<p>The design and analysis of on-farm experimentation (OFE) have received growing attention because of the availability of precision machinery that promotes data collection. Even though replicated trials are the most recommended designs, on-farm trials with no replication are used in scenarios where variable rate technology is not available. Despite the abundance of georeferenced data within each plot harvested with yield monitor, treatments are not replicated. This paper presents an approach to statistically analyze unreplicated OFE promoting field-specific inference of treatment effects. Statistical tools for spatial data are coupled with permutation tests to determine the statistical significance between treatment means. The new methodology (OFE-mean test) involves: (1) calculation of effective sample size (ESS) given the underlying spatial structure, (2) ANOVA permutation test on a random sample of ESS, and (3) generation of the empirical distribution of p-values from repetition of step two. The median of this empirical distribution is regarded as the p-value associated with the no treatment effect hypothesis. The OFE-mean test is illustrated using several OFE trials comparing two treatments under different scenarios: with and without treatment differences. Additional assessment is carried out under simulated scenarios with different levels of spatial correlation, variability, and mean differences between treatments. The OFE-mean test had high power to detect mean differences higher than 15% for all spatial structures when total variability was lower than 30%. After treatment effects were removed, no type I error occurred in real data. The test can be easily extended to cover scenarios with more than two treatments. R scripts and sample files to run the OFE-mean test are provided.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"13 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method to compare treatments in unreplicated on-farm experimentation\",\"authors\":\"M. Córdoba, P. Paccioretti, M. Balzarini\",\"doi\":\"10.1007/s11119-024-10206-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The design and analysis of on-farm experimentation (OFE) have received growing attention because of the availability of precision machinery that promotes data collection. Even though replicated trials are the most recommended designs, on-farm trials with no replication are used in scenarios where variable rate technology is not available. Despite the abundance of georeferenced data within each plot harvested with yield monitor, treatments are not replicated. This paper presents an approach to statistically analyze unreplicated OFE promoting field-specific inference of treatment effects. Statistical tools for spatial data are coupled with permutation tests to determine the statistical significance between treatment means. The new methodology (OFE-mean test) involves: (1) calculation of effective sample size (ESS) given the underlying spatial structure, (2) ANOVA permutation test on a random sample of ESS, and (3) generation of the empirical distribution of p-values from repetition of step two. The median of this empirical distribution is regarded as the p-value associated with the no treatment effect hypothesis. The OFE-mean test is illustrated using several OFE trials comparing two treatments under different scenarios: with and without treatment differences. Additional assessment is carried out under simulated scenarios with different levels of spatial correlation, variability, and mean differences between treatments. The OFE-mean test had high power to detect mean differences higher than 15% for all spatial structures when total variability was lower than 30%. After treatment effects were removed, no type I error occurred in real data. The test can be easily extended to cover scenarios with more than two treatments. R scripts and sample files to run the OFE-mean test are provided.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-024-10206-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10206-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

农场实验(OFE)的设计和分析受到越来越多的关注,因为精密机械的可用性促进了数据的收集。尽管重复试验是最推荐的设计,但在没有可变速率技术的情况下,也会使用没有重复的农场试验。尽管在使用产量监测器收获的每个地块中有丰富的地理参考数据,但处理不能重复。本文提出了一种统计分析非重复OFE的方法,促进了治疗效果的特定领域推断。空间数据的统计工具与排列检验相结合,以确定处理方法之间的统计显著性。新的方法(均值检验)包括:(1)根据潜在空间结构计算有效样本量(ESS),(2)对随机样本进行方差分析排列检验,以及(3)通过重复第二步生成p值的经验分布。该经验分布的中位数被视为与无治疗效果假设相关的p值。使用几个OFE试验来比较不同情况下的两种治疗:有治疗差异和没有治疗差异。在具有不同水平的空间相关性、可变性和处理之间的平均差异的模拟情景下进行了额外的评估。当总变异率低于30%时,所有空间结构的均值差异均大于15%。去除治疗效应后,真实数据没有出现I型误差。该测试可以很容易地扩展到涵盖两种以上治疗的情况。提供了运行ofe均值测试的R脚本和示例文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new method to compare treatments in unreplicated on-farm experimentation

The design and analysis of on-farm experimentation (OFE) have received growing attention because of the availability of precision machinery that promotes data collection. Even though replicated trials are the most recommended designs, on-farm trials with no replication are used in scenarios where variable rate technology is not available. Despite the abundance of georeferenced data within each plot harvested with yield monitor, treatments are not replicated. This paper presents an approach to statistically analyze unreplicated OFE promoting field-specific inference of treatment effects. Statistical tools for spatial data are coupled with permutation tests to determine the statistical significance between treatment means. The new methodology (OFE-mean test) involves: (1) calculation of effective sample size (ESS) given the underlying spatial structure, (2) ANOVA permutation test on a random sample of ESS, and (3) generation of the empirical distribution of p-values from repetition of step two. The median of this empirical distribution is regarded as the p-value associated with the no treatment effect hypothesis. The OFE-mean test is illustrated using several OFE trials comparing two treatments under different scenarios: with and without treatment differences. Additional assessment is carried out under simulated scenarios with different levels of spatial correlation, variability, and mean differences between treatments. The OFE-mean test had high power to detect mean differences higher than 15% for all spatial structures when total variability was lower than 30%. After treatment effects were removed, no type I error occurred in real data. The test can be easily extended to cover scenarios with more than two treatments. R scripts and sample files to run the OFE-mean test are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
期刊最新文献
Cauliflower centre detection and 3-dimensional tracking for robotic intrarow weeding Forecasting field rice grain moisture content using Sentinel-2 and weather data Highly efficient wheat lodging extraction algorithm based on two-peak search algorithm Detecting spatial variation in wild blueberry water stress using UAV-borne thermal imagery: distinct temporal and reference temperature effects Stability maps using historical NDVI images on durum wheat to understand the causes of spatial variability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1