通过可切割的抗4- 1bb -白细胞介素-15融合蛋白,肿瘤内Treg细胞消耗和CD8+ T细胞扩增同时发生

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Nature Biomedical Engineering Pub Date : 2024-12-02 DOI:10.1038/s41551-024-01303-6
Yueqi Cai, Zilong Han, Jiao Shen, Zhuangzhi Zou, Jingya Guo, Yong Liang, Shijie Li, Huiping Liao, Zhenhua Ren, Hua Peng, Yang-Xin Fu
{"title":"通过可切割的抗4- 1bb -白细胞介素-15融合蛋白,肿瘤内Treg细胞消耗和CD8+ T细胞扩增同时发生","authors":"Yueqi Cai, Zilong Han, Jiao Shen, Zhuangzhi Zou, Jingya Guo, Yong Liang, Shijie Li, Huiping Liao, Zhenhua Ren, Hua Peng, Yang-Xin Fu","doi":"10.1038/s41551-024-01303-6","DOIUrl":null,"url":null,"abstract":"<p>Potent agonists of the inducible co-stimulatory receptor 4-1BB are too toxic for patients with advanced cancer. Here, on the basis of observations of a weak agonist of 4-1BB depleting regulatory T (T<sub>reg</sub>) cells within the tumour microenvironment without leading to substantial restoration of dysfunctional cytotoxic T cells (CTLs), we show that effective tumour control can be achieved via concurrent T<sub>reg</sub> cell depletion and CTL expansion through an anti-4-1BB antibody fused to interleukin-15 (IL-15) via a peptide sensitive to tumour proteases. In mouse models of advanced cancers, intraperitoneal injection of the bifunctional protein attenuated the activity of the interleukin mostly in the periphery of the primary tumour while allowing for the expansion of CTLs within the tumour microenvironment, led to more effective tumour inhibition and to lower systemic toxicity than treating the cancers with combinatorial treatment with unlinked anti-4-1BB antibody and IL-15, and reduced the resistance of tumours to checkpoint blockade. Concurrent eradication of T<sub>reg</sub> cells and activation of tumour-infiltrating lymphocytes may represent a general strategy for the effective control of advanced metastatic tumours.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"74 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concurrent intratumoural Treg cell depletion and CD8+ T cell expansion via a cleavable anti-4-1BB–interleukin-15 fusion protein\",\"authors\":\"Yueqi Cai, Zilong Han, Jiao Shen, Zhuangzhi Zou, Jingya Guo, Yong Liang, Shijie Li, Huiping Liao, Zhenhua Ren, Hua Peng, Yang-Xin Fu\",\"doi\":\"10.1038/s41551-024-01303-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Potent agonists of the inducible co-stimulatory receptor 4-1BB are too toxic for patients with advanced cancer. Here, on the basis of observations of a weak agonist of 4-1BB depleting regulatory T (T<sub>reg</sub>) cells within the tumour microenvironment without leading to substantial restoration of dysfunctional cytotoxic T cells (CTLs), we show that effective tumour control can be achieved via concurrent T<sub>reg</sub> cell depletion and CTL expansion through an anti-4-1BB antibody fused to interleukin-15 (IL-15) via a peptide sensitive to tumour proteases. In mouse models of advanced cancers, intraperitoneal injection of the bifunctional protein attenuated the activity of the interleukin mostly in the periphery of the primary tumour while allowing for the expansion of CTLs within the tumour microenvironment, led to more effective tumour inhibition and to lower systemic toxicity than treating the cancers with combinatorial treatment with unlinked anti-4-1BB antibody and IL-15, and reduced the resistance of tumours to checkpoint blockade. Concurrent eradication of T<sub>reg</sub> cells and activation of tumour-infiltrating lymphocytes may represent a general strategy for the effective control of advanced metastatic tumours.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-024-01303-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01303-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

诱导共刺激受体4-1BB的强效激动剂对晚期癌症患者毒性太大。在此,基于对肿瘤微环境中4-1BB消耗调节性T (Treg)细胞的弱激动剂的观察,而不会导致功能失调的细胞毒性T细胞(CTL)的实质性恢复,我们表明,通过一种对肿瘤酶敏感的肽融合白细胞间素-15 (IL-15)的抗4-1BB抗体,可以通过Treg细胞消耗和CTL扩增同时实现有效的肿瘤控制。在晚期癌症小鼠模型中,腹腔注射双功能蛋白减弱了主要在原发肿瘤周围的白细胞介素的活性,同时允许肿瘤微环境内ctl的扩张,与使用非联抗4- 1bb抗体和IL-15联合治疗癌症相比,导致更有效的肿瘤抑制和更低的全身毒性,并降低了肿瘤对检查点封锁的抵抗力。同时根除Treg细胞和激活肿瘤浸润淋巴细胞可能是有效控制晚期转移性肿瘤的一般策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Concurrent intratumoural Treg cell depletion and CD8+ T cell expansion via a cleavable anti-4-1BB–interleukin-15 fusion protein

Potent agonists of the inducible co-stimulatory receptor 4-1BB are too toxic for patients with advanced cancer. Here, on the basis of observations of a weak agonist of 4-1BB depleting regulatory T (Treg) cells within the tumour microenvironment without leading to substantial restoration of dysfunctional cytotoxic T cells (CTLs), we show that effective tumour control can be achieved via concurrent Treg cell depletion and CTL expansion through an anti-4-1BB antibody fused to interleukin-15 (IL-15) via a peptide sensitive to tumour proteases. In mouse models of advanced cancers, intraperitoneal injection of the bifunctional protein attenuated the activity of the interleukin mostly in the periphery of the primary tumour while allowing for the expansion of CTLs within the tumour microenvironment, led to more effective tumour inhibition and to lower systemic toxicity than treating the cancers with combinatorial treatment with unlinked anti-4-1BB antibody and IL-15, and reduced the resistance of tumours to checkpoint blockade. Concurrent eradication of Treg cells and activation of tumour-infiltrating lymphocytes may represent a general strategy for the effective control of advanced metastatic tumours.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
期刊最新文献
Radioprotection of healthy tissue via nanoparticle-delivered mRNA encoding for a damage-suppressor protein found in tardigrades Enhancing phage therapy by coating single bacteriophage-infected bacteria with polymer to preserve phage vitality Molecular probes for in vivo optical imaging of immune cells Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data Charting targeted courses for vaccination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1