增强短视频推荐的用户行为感知多任务学习模型

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-29 DOI:10.1016/j.neucom.2024.129076
Yuewei Wu , Ruiling Fu , Tongtong Xing , Zhenyu Yu , Fulian Yin
{"title":"增强短视频推荐的用户行为感知多任务学习模型","authors":"Yuewei Wu ,&nbsp;Ruiling Fu ,&nbsp;Tongtong Xing ,&nbsp;Zhenyu Yu ,&nbsp;Fulian Yin","doi":"10.1016/j.neucom.2024.129076","DOIUrl":null,"url":null,"abstract":"<div><div>In the rapidly evolving landscape of digital media consumption, accurately predicting user preferences and behaviors is critical for the effectiveness of recommendation systems, especially for short video content. Traditional recommendation methods often ignore the association between multiple user behavior types and struggle with dynamically adapting to user behavior changes, leading to suboptimal personalization and user engagement. To address these issues, this paper introduces a user behavior-aware multi-task learning model for enhanced short video recommendation (UBA-SVR) by leveraging insights into dynamic user interactions. In our approach, we construct a user behavior-aware transformer to comprehensively capture users’ dynamic interests and generate the fusion feature representation. Subsequently, we introduce a hierarchical knowledge extraction framework to process features in multi-stage and adopt a task-aware attention mechanism within the tower network structure to facilitate effective information sharing and differentiation among tasks. Furthermore, we employ a dynamic joint loss optimization strategy to adaptively adjust the loss weights for different tasks to promote collaborative enhancement. Extensive experiments on two real-world datasets demonstrate that the proposed method achieves significant improvements in multiple prediction tasks simultaneously.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 129076"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A user behavior-aware multi-task learning model for enhanced short video recommendation\",\"authors\":\"Yuewei Wu ,&nbsp;Ruiling Fu ,&nbsp;Tongtong Xing ,&nbsp;Zhenyu Yu ,&nbsp;Fulian Yin\",\"doi\":\"10.1016/j.neucom.2024.129076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the rapidly evolving landscape of digital media consumption, accurately predicting user preferences and behaviors is critical for the effectiveness of recommendation systems, especially for short video content. Traditional recommendation methods often ignore the association between multiple user behavior types and struggle with dynamically adapting to user behavior changes, leading to suboptimal personalization and user engagement. To address these issues, this paper introduces a user behavior-aware multi-task learning model for enhanced short video recommendation (UBA-SVR) by leveraging insights into dynamic user interactions. In our approach, we construct a user behavior-aware transformer to comprehensively capture users’ dynamic interests and generate the fusion feature representation. Subsequently, we introduce a hierarchical knowledge extraction framework to process features in multi-stage and adopt a task-aware attention mechanism within the tower network structure to facilitate effective information sharing and differentiation among tasks. Furthermore, we employ a dynamic joint loss optimization strategy to adaptively adjust the loss weights for different tasks to promote collaborative enhancement. Extensive experiments on two real-world datasets demonstrate that the proposed method achieves significant improvements in multiple prediction tasks simultaneously.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"617 \",\"pages\":\"Article 129076\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224018472\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224018472","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的数字媒体消费环境中,准确预测用户偏好和行为对于推荐系统的有效性至关重要,特别是对于短视频内容。传统的推荐方法往往忽略了多种用户行为类型之间的关联,难以动态适应用户行为的变化,导致个性化和用户参与度不理想。为了解决这些问题,本文引入了一个用户行为感知的多任务学习模型,通过利用对动态用户交互的洞察来增强短视频推荐(UBA-SVR)。在我们的方法中,我们构建了一个用户行为感知转换器来全面捕获用户的动态兴趣并生成融合特征表示。随后,我们引入分层知识提取框架对特征进行多阶段处理,并在塔式网络结构中采用任务感知关注机制,促进任务间的有效信息共享和区分。此外,我们采用动态联合损失优化策略自适应调整不同任务的损失权重,以促进协同增强。在两个真实数据集上的大量实验表明,该方法在同时处理多个预测任务方面取得了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A user behavior-aware multi-task learning model for enhanced short video recommendation
In the rapidly evolving landscape of digital media consumption, accurately predicting user preferences and behaviors is critical for the effectiveness of recommendation systems, especially for short video content. Traditional recommendation methods often ignore the association between multiple user behavior types and struggle with dynamically adapting to user behavior changes, leading to suboptimal personalization and user engagement. To address these issues, this paper introduces a user behavior-aware multi-task learning model for enhanced short video recommendation (UBA-SVR) by leveraging insights into dynamic user interactions. In our approach, we construct a user behavior-aware transformer to comprehensively capture users’ dynamic interests and generate the fusion feature representation. Subsequently, we introduce a hierarchical knowledge extraction framework to process features in multi-stage and adopt a task-aware attention mechanism within the tower network structure to facilitate effective information sharing and differentiation among tasks. Furthermore, we employ a dynamic joint loss optimization strategy to adaptively adjust the loss weights for different tasks to promote collaborative enhancement. Extensive experiments on two real-world datasets demonstrate that the proposed method achieves significant improvements in multiple prediction tasks simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Monocular thermal SLAM with neural radiance fields for 3D scene reconstruction Learning a more compact representation for low-rank tensor completion An HVS-derived network for assessing the quality of camouflaged targets with feature fusion Global Span Semantic Dependency Awareness and Filtering Network for nested named entity recognition A user behavior-aware multi-task learning model for enhanced short video recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1