交替磁体的晶体化学和设计原理

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Organic & Inorganic Au Pub Date : 2024-10-23 DOI:10.1021/acsorginorgau.4c0006410.1021/acsorginorgau.4c00064
Chao-Chun Wei, Erick Lawrence, Alyssa Tran and Huiwen Ji*, 
{"title":"交替磁体的晶体化学和设计原理","authors":"Chao-Chun Wei,&nbsp;Erick Lawrence,&nbsp;Alyssa Tran and Huiwen Ji*,&nbsp;","doi":"10.1021/acsorginorgau.4c0006410.1021/acsorginorgau.4c00064","DOIUrl":null,"url":null,"abstract":"<p >Altermagnetism was very recently identified as a new type of magnetic phase beyond the conventional dichotomy of ferromagnetism (FM) and antiferromagnetism (AFM). Its globally compensated magnetization and directional spin polarization promise new properties such as spin-polarized conductivity, spin-transfer torque, anomalous Hall effect, tunneling, and giant magnetoresistance that are highly useful for the next-generation memory devices, magnetic detectors, and energy conversion. Though this area has been historically led by the thin-film community, the identification of altermagnetism ultimately relies on precise magnetic structure determination, which can be most efficiently done in bulk materials. Our review, written from a materials chemistry perspective, intends to encourage materials and solid-state chemists to make contributions to this emerging topic through new materials discovery by leveraging neutron diffraction to determine the magnetic structures as well as bulk crystal growth for exploring exotic properties. We first review the symmetric classification for the identification of altermagnets with a summary of chemical principles and design rules, followed by a discussion of the unique physical properties in relation to crystal and magnetic structural symmetry. Several major families of compounds in which altermagnets have been identified are then reviewed. We conclude by giving an outlook for future directions.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"604–619 604–619"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00064","citationCount":"0","resultStr":"{\"title\":\"Crystal Chemistry and Design Principles of Altermagnets\",\"authors\":\"Chao-Chun Wei,&nbsp;Erick Lawrence,&nbsp;Alyssa Tran and Huiwen Ji*,&nbsp;\",\"doi\":\"10.1021/acsorginorgau.4c0006410.1021/acsorginorgau.4c00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Altermagnetism was very recently identified as a new type of magnetic phase beyond the conventional dichotomy of ferromagnetism (FM) and antiferromagnetism (AFM). Its globally compensated magnetization and directional spin polarization promise new properties such as spin-polarized conductivity, spin-transfer torque, anomalous Hall effect, tunneling, and giant magnetoresistance that are highly useful for the next-generation memory devices, magnetic detectors, and energy conversion. Though this area has been historically led by the thin-film community, the identification of altermagnetism ultimately relies on precise magnetic structure determination, which can be most efficiently done in bulk materials. Our review, written from a materials chemistry perspective, intends to encourage materials and solid-state chemists to make contributions to this emerging topic through new materials discovery by leveraging neutron diffraction to determine the magnetic structures as well as bulk crystal growth for exploring exotic properties. We first review the symmetric classification for the identification of altermagnets with a summary of chemical principles and design rules, followed by a discussion of the unique physical properties in relation to crystal and magnetic structural symmetry. Several major families of compounds in which altermagnets have been identified are then reviewed. We conclude by giving an outlook for future directions.</p>\",\"PeriodicalId\":29797,\"journal\":{\"name\":\"ACS Organic & Inorganic Au\",\"volume\":\"4 6\",\"pages\":\"604–619 604–619\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Organic & Inorganic Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsorginorgau.4c00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.4c00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁相是近年来在传统的铁磁性和反铁磁性二分法之外发现的一种新型磁相。它的全局补偿磁化和定向自旋极化带来了新的特性,如自旋极化电导率、自旋转移扭矩、异常霍尔效应、隧道效应和巨磁电阻,这些特性对下一代存储器件、磁探测器和能量转换非常有用。虽然这一领域在历史上一直由薄膜界领导,但电磁的识别最终依赖于精确的磁结构测定,这在块状材料中可以最有效地完成。我们的综述从材料化学的角度出发,旨在鼓励材料和固态化学家通过利用中子衍射来确定磁性结构和块状晶体生长来探索奇异性质,从而发现新材料,从而为这一新兴主题做出贡献。我们首先回顾了用于识别交替磁体的对称分类,总结了化学原理和设计规则,然后讨论了与晶体和磁性结构对称相关的独特物理性质。几个主要家族的化合物,其中已确定的交替磁体,然后审查。最后,我们展望了未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal Chemistry and Design Principles of Altermagnets

Altermagnetism was very recently identified as a new type of magnetic phase beyond the conventional dichotomy of ferromagnetism (FM) and antiferromagnetism (AFM). Its globally compensated magnetization and directional spin polarization promise new properties such as spin-polarized conductivity, spin-transfer torque, anomalous Hall effect, tunneling, and giant magnetoresistance that are highly useful for the next-generation memory devices, magnetic detectors, and energy conversion. Though this area has been historically led by the thin-film community, the identification of altermagnetism ultimately relies on precise magnetic structure determination, which can be most efficiently done in bulk materials. Our review, written from a materials chemistry perspective, intends to encourage materials and solid-state chemists to make contributions to this emerging topic through new materials discovery by leveraging neutron diffraction to determine the magnetic structures as well as bulk crystal growth for exploring exotic properties. We first review the symmetric classification for the identification of altermagnets with a summary of chemical principles and design rules, followed by a discussion of the unique physical properties in relation to crystal and magnetic structural symmetry. Several major families of compounds in which altermagnets have been identified are then reviewed. We conclude by giving an outlook for future directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Organic & Inorganic Au
ACS Organic & Inorganic Au 有机化学、无机化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Ligand-Functionalized Organometallic Polyoxometalate as an Efficient Catalyst Precursor for Amide Hydrogenation Ligand-Functionalized Organometallic Polyoxometalate as an Efficient Catalyst Precursor for Amide Hydrogenation. The Future of Electro-organic Synthesis in Drug Discovery and Early Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1