Junyao Wang, Xi Liu, Yuxin Song, Zhonghua Liu, Xing Tang, Huaxin Tan
{"title":"LC-AMP-I1,一种从狼蛛Lycosa coelestis毒液衍生的新型抗菌肽。","authors":"Junyao Wang, Xi Liu, Yuxin Song, Zhonghua Liu, Xing Tang, Huaxin Tan","doi":"10.1128/aac.00424-24","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance has become a critical concern in recent years, and antimicrobial peptides may function as innovative antibacterial agents to address this issue. In this work, we identified a novel antimicrobial peptide, LC-AMP-I1, derived from the venom of <i>Lycosa coelestis</i>, demonstrating substantial antibacterial properties and minimal hemolytic activity. LC-AMP-I1 was subjected to additional assessment for antibacterial efficacy, anti-biofilm properties, drug resistance, stability, and cytotoxicity <i>in vitro</i>. It exhibited comparable antibacterial efficacy to melittin against six common clinical multidrug-resistant bacteria, effectively inhibiting biofilm formation and disrupting established biofilms. Additionally, LC-AMP-I1 demonstrated minimal bacterial resistance, excellent stability, negligible mammalian cell toxicity, low hemolytic activity, and appropriate selectivity for both normal and tumor cells. When combined with traditional antibiotics, LC-AMP-I1 exhibited additive or synergistic therapeutic effects. In a neutropenic mouse thigh infection model, LC-AMP-I1 exhibited a therapeutic effect in inhibiting bacterial proliferation <i>in vivo</i>. The mechanistic investigation indicated that LC-AMP-I1 could influence bacterial cell membrane permeability at low concentrations and directly disrupt structure-function at high concentrations. The results of this work indicate that LC-AMP-I1 may function as a viable alternative to traditional antibiotics in addressing multidrug-resistant bacteria.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0042424"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784185/pdf/","citationCount":"0","resultStr":"{\"title\":\"LC-AMP-I1, a novel venom-derived antimicrobial peptide from the wolf spider <i>Lycosa coelestis</i>.\",\"authors\":\"Junyao Wang, Xi Liu, Yuxin Song, Zhonghua Liu, Xing Tang, Huaxin Tan\",\"doi\":\"10.1128/aac.00424-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance has become a critical concern in recent years, and antimicrobial peptides may function as innovative antibacterial agents to address this issue. In this work, we identified a novel antimicrobial peptide, LC-AMP-I1, derived from the venom of <i>Lycosa coelestis</i>, demonstrating substantial antibacterial properties and minimal hemolytic activity. LC-AMP-I1 was subjected to additional assessment for antibacterial efficacy, anti-biofilm properties, drug resistance, stability, and cytotoxicity <i>in vitro</i>. It exhibited comparable antibacterial efficacy to melittin against six common clinical multidrug-resistant bacteria, effectively inhibiting biofilm formation and disrupting established biofilms. Additionally, LC-AMP-I1 demonstrated minimal bacterial resistance, excellent stability, negligible mammalian cell toxicity, low hemolytic activity, and appropriate selectivity for both normal and tumor cells. When combined with traditional antibiotics, LC-AMP-I1 exhibited additive or synergistic therapeutic effects. In a neutropenic mouse thigh infection model, LC-AMP-I1 exhibited a therapeutic effect in inhibiting bacterial proliferation <i>in vivo</i>. The mechanistic investigation indicated that LC-AMP-I1 could influence bacterial cell membrane permeability at low concentrations and directly disrupt structure-function at high concentrations. The results of this work indicate that LC-AMP-I1 may function as a viable alternative to traditional antibiotics in addressing multidrug-resistant bacteria.</p>\",\"PeriodicalId\":8152,\"journal\":{\"name\":\"Antimicrobial Agents and Chemotherapy\",\"volume\":\" \",\"pages\":\"e0042424\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antimicrobial Agents and Chemotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/aac.00424-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00424-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
LC-AMP-I1, a novel venom-derived antimicrobial peptide from the wolf spider Lycosa coelestis.
Antibiotic resistance has become a critical concern in recent years, and antimicrobial peptides may function as innovative antibacterial agents to address this issue. In this work, we identified a novel antimicrobial peptide, LC-AMP-I1, derived from the venom of Lycosa coelestis, demonstrating substantial antibacterial properties and minimal hemolytic activity. LC-AMP-I1 was subjected to additional assessment for antibacterial efficacy, anti-biofilm properties, drug resistance, stability, and cytotoxicity in vitro. It exhibited comparable antibacterial efficacy to melittin against six common clinical multidrug-resistant bacteria, effectively inhibiting biofilm formation and disrupting established biofilms. Additionally, LC-AMP-I1 demonstrated minimal bacterial resistance, excellent stability, negligible mammalian cell toxicity, low hemolytic activity, and appropriate selectivity for both normal and tumor cells. When combined with traditional antibiotics, LC-AMP-I1 exhibited additive or synergistic therapeutic effects. In a neutropenic mouse thigh infection model, LC-AMP-I1 exhibited a therapeutic effect in inhibiting bacterial proliferation in vivo. The mechanistic investigation indicated that LC-AMP-I1 could influence bacterial cell membrane permeability at low concentrations and directly disrupt structure-function at high concentrations. The results of this work indicate that LC-AMP-I1 may function as a viable alternative to traditional antibiotics in addressing multidrug-resistant bacteria.
期刊介绍:
Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.