Anthony J Politza, Tianyi Liu, Aneesh Kshirsagar, Ming Dong, Md Ahasan Ahamed, Weihua Guan
{"title":"一种便携式无实验室多功能核酸提取装置的开发和验证。","authors":"Anthony J Politza, Tianyi Liu, Aneesh Kshirsagar, Ming Dong, Md Ahasan Ahamed, Weihua Guan","doi":"10.1080/07366205.2024.2427544","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleic acid testing (NAT) has revolutionized diagnostics by providing precise, rapid, and scalable detection methods for diverse biological samples. These recent advancements satisfy the increasing demand for on-site diagnostics, yet sample preparation remains a significant bottleneck for achieving highly sensitive diagnostic assays. There is an unmet need for compatible, efficient, and lab-free sample preparation for point-of-care NAT. To address this, we developed a portable, lab-free, and battery-powered device for extracting nucleic acids. We explored using low centrifugal forces with existing commercial chemistry, demonstrating excellent performance. We designed and tested a battery-powered device to enable lab-free extractions, and verified reagents stored out to 6 months, suggesting exceptional deployment capabilities. We evaluated our device, comparing our results against those from a benchtop centrifuge across three types of samples: HIV RNA in buffer, HIV RNA in plasma, and SARS-CoV-2 RNA in saliva. The portable device demonstrated excellent agreement with the benchtop centrifuge, indicating high reliability. By providing an effective on-site sample preparation solution, the widespread adoption of low centrifugal extractions will improve the sensitivity and reliability of NAT and will positively impact other point-of-care technologies such as next generation sequencing (NGS), biomarker detection, and environmental monitoring.</p>","PeriodicalId":8945,"journal":{"name":"BioTechniques","volume":" ","pages":"505-515"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a portable device for lab-free versatile nucleic acid extraction.\",\"authors\":\"Anthony J Politza, Tianyi Liu, Aneesh Kshirsagar, Ming Dong, Md Ahasan Ahamed, Weihua Guan\",\"doi\":\"10.1080/07366205.2024.2427544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nucleic acid testing (NAT) has revolutionized diagnostics by providing precise, rapid, and scalable detection methods for diverse biological samples. These recent advancements satisfy the increasing demand for on-site diagnostics, yet sample preparation remains a significant bottleneck for achieving highly sensitive diagnostic assays. There is an unmet need for compatible, efficient, and lab-free sample preparation for point-of-care NAT. To address this, we developed a portable, lab-free, and battery-powered device for extracting nucleic acids. We explored using low centrifugal forces with existing commercial chemistry, demonstrating excellent performance. We designed and tested a battery-powered device to enable lab-free extractions, and verified reagents stored out to 6 months, suggesting exceptional deployment capabilities. We evaluated our device, comparing our results against those from a benchtop centrifuge across three types of samples: HIV RNA in buffer, HIV RNA in plasma, and SARS-CoV-2 RNA in saliva. The portable device demonstrated excellent agreement with the benchtop centrifuge, indicating high reliability. By providing an effective on-site sample preparation solution, the widespread adoption of low centrifugal extractions will improve the sensitivity and reliability of NAT and will positively impact other point-of-care technologies such as next generation sequencing (NGS), biomarker detection, and environmental monitoring.</p>\",\"PeriodicalId\":8945,\"journal\":{\"name\":\"BioTechniques\",\"volume\":\" \",\"pages\":\"505-515\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTechniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07366205.2024.2427544\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07366205.2024.2427544","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Development and validation of a portable device for lab-free versatile nucleic acid extraction.
Nucleic acid testing (NAT) has revolutionized diagnostics by providing precise, rapid, and scalable detection methods for diverse biological samples. These recent advancements satisfy the increasing demand for on-site diagnostics, yet sample preparation remains a significant bottleneck for achieving highly sensitive diagnostic assays. There is an unmet need for compatible, efficient, and lab-free sample preparation for point-of-care NAT. To address this, we developed a portable, lab-free, and battery-powered device for extracting nucleic acids. We explored using low centrifugal forces with existing commercial chemistry, demonstrating excellent performance. We designed and tested a battery-powered device to enable lab-free extractions, and verified reagents stored out to 6 months, suggesting exceptional deployment capabilities. We evaluated our device, comparing our results against those from a benchtop centrifuge across three types of samples: HIV RNA in buffer, HIV RNA in plasma, and SARS-CoV-2 RNA in saliva. The portable device demonstrated excellent agreement with the benchtop centrifuge, indicating high reliability. By providing an effective on-site sample preparation solution, the widespread adoption of low centrifugal extractions will improve the sensitivity and reliability of NAT and will positively impact other point-of-care technologies such as next generation sequencing (NGS), biomarker detection, and environmental monitoring.
期刊介绍:
BioTechniques is a peer-reviewed, open-access journal dedicated to publishing original laboratory methods, related technical and software tools, and methods-oriented review articles that are of broad interest to professional life scientists, as well as to scientists from other disciplines (e.g., chemistry, physics, computer science, plant and agricultural science and climate science) interested in life science applications for their technologies.
Since 1983, BioTechniques has been a leading peer-reviewed journal for methods-related research. The journal considers:
Reports describing innovative new methods, platforms and software, substantive modifications to existing methods, or innovative applications of existing methods, techniques & tools to new models or scientific questions
Descriptions of technical tools that facilitate the design or performance of experiments or data analysis, such as software and simple laboratory devices
Surveys of technical approaches related to broad fields of research
Reviews discussing advancements in techniques and methods related to broad fields of research
Letters to the Editor and Expert Opinions highlighting interesting observations or cautionary tales concerning experimental design, methodology or analysis.