1型糖尿病治疗中强化血糖调节的工程孔富集和预血管化体积结构

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2024-12-16 DOI:10.1088/1758-5090/ad998e
Jaewook Kim, In Kyong Shim, Yu Na Lee, Myungji Kim, Dong Gyu Hwang, Jihwan Kim, Yeonggwon Jo, Suhun Chae, Jisoo Kim, Song Cheol Kim, Dong-Woo Cho, Jinah Jang
{"title":"1型糖尿病治疗中强化血糖调节的工程孔富集和预血管化体积结构","authors":"Jaewook Kim, In Kyong Shim, Yu Na Lee, Myungji Kim, Dong Gyu Hwang, Jihwan Kim, Yeonggwon Jo, Suhun Chae, Jisoo Kim, Song Cheol Kim, Dong-Woo Cho, Jinah Jang","doi":"10.1088/1758-5090/ad998e","DOIUrl":null,"url":null,"abstract":"<p><p>Managing type 1 diabetes mellitus (T1DM) presents significant challenges because of the complexity of replicating the microenvironment of pancreatic islets and ensuring the long-term viability and function of transplanted insulin-producing cells (IPCs). This study developed a functional approach that utilizes 3D bioprinting technology to create pore-enriched and pre-vascularized tissue constructs incorporating a pancreatic tissue-derived decellularized extracellular matrix and human-induced pluripotent stem cells (hiPSCs) aimed at enhancing blood glucose regulation in T1DM. We designed a volumetric 3D pancreatic tissue construct that supported the engraftment, survival, and insulin-producing functionality of hiPSC-derived IPCs. The construct's porosity was optimized to enhance IPC delivery efficiency. Additionally, human umbilical vein endothelial cells co-cultured with IPCs in a patterned structure facilitated pre-vascularization, improving construct integration with host tissues and accelerating revascularization post-transplantation. Our results demonstrate high cell viability and sustained insulin production in diabetic rodent models, indicating the constructs' effectiveness in regulating blood glucose levels over an extended period. The findings of this study not only underscore the potential of 3D bioprinting for creating functional tissue constructs for T1DM treatment but also offer efficient cell delivery techniques applicable to other areas of regenerative medicine.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering pore-enriched and pre-vascularized volumetric constructs for enhanced blood glucose regulation in type 1 diabetes therapy.\",\"authors\":\"Jaewook Kim, In Kyong Shim, Yu Na Lee, Myungji Kim, Dong Gyu Hwang, Jihwan Kim, Yeonggwon Jo, Suhun Chae, Jisoo Kim, Song Cheol Kim, Dong-Woo Cho, Jinah Jang\",\"doi\":\"10.1088/1758-5090/ad998e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Managing type 1 diabetes mellitus (T1DM) presents significant challenges because of the complexity of replicating the microenvironment of pancreatic islets and ensuring the long-term viability and function of transplanted insulin-producing cells (IPCs). This study developed a functional approach that utilizes 3D bioprinting technology to create pore-enriched and pre-vascularized tissue constructs incorporating a pancreatic tissue-derived decellularized extracellular matrix and human-induced pluripotent stem cells (hiPSCs) aimed at enhancing blood glucose regulation in T1DM. We designed a volumetric 3D pancreatic tissue construct that supported the engraftment, survival, and insulin-producing functionality of hiPSC-derived IPCs. The construct's porosity was optimized to enhance IPC delivery efficiency. Additionally, human umbilical vein endothelial cells co-cultured with IPCs in a patterned structure facilitated pre-vascularization, improving construct integration with host tissues and accelerating revascularization post-transplantation. Our results demonstrate high cell viability and sustained insulin production in diabetic rodent models, indicating the constructs' effectiveness in regulating blood glucose levels over an extended period. The findings of this study not only underscore the potential of 3D bioprinting for creating functional tissue constructs for T1DM treatment but also offer efficient cell delivery techniques applicable to other areas of regenerative medicine.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ad998e\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad998e","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

1型糖尿病(T1DM)的治疗面临着巨大的挑战,因为复制胰岛微环境和确保移植胰岛素生成细胞(IPCs)的长期生存能力和功能非常复杂。本研究开发了一种功能方法,利用3D生物打印技术,结合胰腺组织来源的脱细胞细胞外基质(pdECM)和人类诱导的多能干细胞(hiPSCs),创建孔隙富集和预血管化的组织结构,旨在增强T1DM患者的血糖调节。我们设计了一种体积三维胰腺组织结构(3D PTC),支持hipsc衍生的IPCs的植入、存活和胰岛素产生功能。优化了结构的孔隙度,以提高IPC的输送效率。此外,人脐静脉内皮细胞(HUVECs)与IPCs在模式结构中共同培养,促进了预血管形成,改善了构建体与宿主组织的整合,加速了移植后的血运重建。我们的研究结果在糖尿病啮齿动物模型中证明了高细胞活力和持续的胰岛素产生,表明该结构在长时间内调节血糖水平的有效性。这项研究的发现不仅强调了3D生物打印在为T1DM治疗创造功能性组织结构方面的潜力,而且还提供了适用于再生医学其他领域的高效细胞递送技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering pore-enriched and pre-vascularized volumetric constructs for enhanced blood glucose regulation in type 1 diabetes therapy.

Managing type 1 diabetes mellitus (T1DM) presents significant challenges because of the complexity of replicating the microenvironment of pancreatic islets and ensuring the long-term viability and function of transplanted insulin-producing cells (IPCs). This study developed a functional approach that utilizes 3D bioprinting technology to create pore-enriched and pre-vascularized tissue constructs incorporating a pancreatic tissue-derived decellularized extracellular matrix and human-induced pluripotent stem cells (hiPSCs) aimed at enhancing blood glucose regulation in T1DM. We designed a volumetric 3D pancreatic tissue construct that supported the engraftment, survival, and insulin-producing functionality of hiPSC-derived IPCs. The construct's porosity was optimized to enhance IPC delivery efficiency. Additionally, human umbilical vein endothelial cells co-cultured with IPCs in a patterned structure facilitated pre-vascularization, improving construct integration with host tissues and accelerating revascularization post-transplantation. Our results demonstrate high cell viability and sustained insulin production in diabetic rodent models, indicating the constructs' effectiveness in regulating blood glucose levels over an extended period. The findings of this study not only underscore the potential of 3D bioprinting for creating functional tissue constructs for T1DM treatment but also offer efficient cell delivery techniques applicable to other areas of regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Bioinks for engineering gradient-based osteochondral and meniscal tissue substitutes: a review. Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing. Microchannel fabrication on bio-grade Nitinol SMA byμ-ED milling process using sustainable oil for improving the machining performance and biocompatibility. Recent trends in embedded 3D bioprinting of vascularized tissue constructs. In-situquality monitoring during embedded bioprinting using integrated microscopy and classical computer vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1