烟草烟雾在肺鳞状细胞癌中调控hsa-mir-301a的机制:来自生物信息学分析的证据

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS Bioinformatics and Biology Insights Pub Date : 2024-11-28 eCollection Date: 2024-01-01 DOI:10.1177/11779322241302168
Vladimir O Pustylnyak, Alina M Perevalova, Lyudmila F Gulyaeva
{"title":"烟草烟雾在肺鳞状细胞癌中调控hsa-mir-301a的机制:来自生物信息学分析的证据","authors":"Vladimir O Pustylnyak, Alina M Perevalova, Lyudmila F Gulyaeva","doi":"10.1177/11779322241302168","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs play a significant role in the development of cancers, including lung cancer. A recent study revealed that smoking, a key risk factor for lung cancer, increased the levels of hsa-mir-301a in the tumor tissues of patients with lung squamous cell carcinoma (LUSC). The aim of the current study is to investigate the mechanism by which tobacco smoke increases hsa-mir-301a levels in LUSC tumor tissues using bioinformatics analysis. Bioinformatics tools and online databases, including The Cancer Genome Atlas (TCGA), LinkedOmics, and Encyclopedia of RNA Interactomes (ENCORI), were applied in this study. Our results showed a correlation between the upregulation of hsa-mir-301a in LUSC tissues and smoking exposure. However, no correlation was discovered between patients' smoking status and the expression level of the hsa-mir-301a host gene, <i>SKA2</i>, prompting us to investigate possible changes in microRNA processing under tobacco smoke exposure. In silico results using online platforms suggest that post-transcriptional processes, which involve the RNA-binding proteins DGCR8 and FUS, contribute to the elevation of mature hsa-mir-301a levels in smoking patients with LUSC. Our findings suggest that RNA-binding proteins play a key role in controlling the processing of hsa-mir-301a, indicating a complex regulation of hsa-mir-301a in the LUSC tissues of smokers.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241302168"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605766/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights of hsa-mir-301a Regulation by Tobacco Smoke in Lung Squamous Cell Carcinoma: Evidence From Bioinformatics Analysis.\",\"authors\":\"Vladimir O Pustylnyak, Alina M Perevalova, Lyudmila F Gulyaeva\",\"doi\":\"10.1177/11779322241302168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs play a significant role in the development of cancers, including lung cancer. A recent study revealed that smoking, a key risk factor for lung cancer, increased the levels of hsa-mir-301a in the tumor tissues of patients with lung squamous cell carcinoma (LUSC). The aim of the current study is to investigate the mechanism by which tobacco smoke increases hsa-mir-301a levels in LUSC tumor tissues using bioinformatics analysis. Bioinformatics tools and online databases, including The Cancer Genome Atlas (TCGA), LinkedOmics, and Encyclopedia of RNA Interactomes (ENCORI), were applied in this study. Our results showed a correlation between the upregulation of hsa-mir-301a in LUSC tissues and smoking exposure. However, no correlation was discovered between patients' smoking status and the expression level of the hsa-mir-301a host gene, <i>SKA2</i>, prompting us to investigate possible changes in microRNA processing under tobacco smoke exposure. In silico results using online platforms suggest that post-transcriptional processes, which involve the RNA-binding proteins DGCR8 and FUS, contribute to the elevation of mature hsa-mir-301a levels in smoking patients with LUSC. Our findings suggest that RNA-binding proteins play a key role in controlling the processing of hsa-mir-301a, indicating a complex regulation of hsa-mir-301a in the LUSC tissues of smokers.</p>\",\"PeriodicalId\":9065,\"journal\":{\"name\":\"Bioinformatics and Biology Insights\",\"volume\":\"18 \",\"pages\":\"11779322241302168\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11779322241302168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322241302168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

microrna在包括肺癌在内的癌症的发展中起着重要作用。最近的一项研究表明,吸烟是肺癌的关键危险因素,可增加肺鳞状细胞癌(LUSC)患者肿瘤组织中hsa-mir-301a的水平。本研究的目的是利用生物信息学分析探讨烟草烟雾增加LUSC肿瘤组织中hsa-mir-301a水平的机制。本研究使用了生物信息学工具和在线数据库,包括The Cancer Genome Atlas (TCGA)、LinkedOmics和Encyclopedia of RNA Interactomes (ENCORI)。我们的研究结果显示,LUSC组织中hsa-mir-301a的上调与吸烟暴露之间存在相关性。然而,没有发现患者吸烟状况与hsa-mir-301a宿主基因SKA2表达水平之间的相关性,这促使我们研究烟草烟雾暴露下microRNA加工的可能变化。使用在线平台的计算机结果表明,涉及rna结合蛋白DGCR8和FUS的转录后过程有助于吸烟LUSC患者成熟hsa-mir-301a水平的升高。我们的研究结果表明,rna结合蛋白在控制hsa-mir-301a的加工过程中起着关键作用,表明hsa-mir-301a在吸烟者的LUSC组织中具有复杂的调控作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanistic Insights of hsa-mir-301a Regulation by Tobacco Smoke in Lung Squamous Cell Carcinoma: Evidence From Bioinformatics Analysis.

MicroRNAs play a significant role in the development of cancers, including lung cancer. A recent study revealed that smoking, a key risk factor for lung cancer, increased the levels of hsa-mir-301a in the tumor tissues of patients with lung squamous cell carcinoma (LUSC). The aim of the current study is to investigate the mechanism by which tobacco smoke increases hsa-mir-301a levels in LUSC tumor tissues using bioinformatics analysis. Bioinformatics tools and online databases, including The Cancer Genome Atlas (TCGA), LinkedOmics, and Encyclopedia of RNA Interactomes (ENCORI), were applied in this study. Our results showed a correlation between the upregulation of hsa-mir-301a in LUSC tissues and smoking exposure. However, no correlation was discovered between patients' smoking status and the expression level of the hsa-mir-301a host gene, SKA2, prompting us to investigate possible changes in microRNA processing under tobacco smoke exposure. In silico results using online platforms suggest that post-transcriptional processes, which involve the RNA-binding proteins DGCR8 and FUS, contribute to the elevation of mature hsa-mir-301a levels in smoking patients with LUSC. Our findings suggest that RNA-binding proteins play a key role in controlling the processing of hsa-mir-301a, indicating a complex regulation of hsa-mir-301a in the LUSC tissues of smokers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
期刊最新文献
Cliotide U1, a Novel Antimicrobial Peptide Isolated From Urtica Dioica Leaves. Resistify: A Novel NLR Classifier That Reveals Helitron-Associated NLR Expansion in Solanaceae. Advancing Regulatory Genomics With Machine Learning. Bioinformatic Annotation of Transposon DNA Processing Genes on the Long-Read Genome Assembly of Caenorhabditis elegans. Comprehensive Analysis of CRISPR-Cas Systems and Their Influence on Antibiotic Resistance in Salmonella enterica Strains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1