在RMCProfile中集成机器学习原子间势与混合反向蒙特卡罗结构改进。

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Applied Crystallography Pub Date : 2024-10-29 eCollection Date: 2024-12-01 DOI:10.1107/S1600576724009282
Paul Cuillier, Matthew G Tucker, Yuanpeng Zhang
{"title":"在RMCProfile中集成机器学习原子间势与混合反向蒙特卡罗结构改进。","authors":"Paul Cuillier, Matthew G Tucker, Yuanpeng Zhang","doi":"10.1107/S1600576724009282","DOIUrl":null,"url":null,"abstract":"<p><p>Structure refinement with reverse Monte Carlo (RMC) is a powerful tool for interpreting experimental diffraction data. To ensure that the under-constrained RMC algorithm yields reasonable results, the hybrid RMC approach applies interatomic potentials to obtain solutions that are both physically sensible and in agreement with experiment. To expand the range of materials that can be studied with hybrid RMC, we have implemented a new interatomic potential constraint in <i>RMCProfile</i> that grants flexibility to apply potentials supported by the <i>Large-scale Atomic/Molecular Massively Parallel Simulator</i> (<i>LAMMPS</i>) molecular dynamics code. This includes machine learning interatomic potentials, which provide a pathway to applying hybrid RMC to materials without currently available interatomic potentials. To this end, we present a methodology to use RMC to train machine learning interatomic potentials for hybrid RMC applications.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 6","pages":"1780-1788"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in <i>RMCProfile</i>.\",\"authors\":\"Paul Cuillier, Matthew G Tucker, Yuanpeng Zhang\",\"doi\":\"10.1107/S1600576724009282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structure refinement with reverse Monte Carlo (RMC) is a powerful tool for interpreting experimental diffraction data. To ensure that the under-constrained RMC algorithm yields reasonable results, the hybrid RMC approach applies interatomic potentials to obtain solutions that are both physically sensible and in agreement with experiment. To expand the range of materials that can be studied with hybrid RMC, we have implemented a new interatomic potential constraint in <i>RMCProfile</i> that grants flexibility to apply potentials supported by the <i>Large-scale Atomic/Molecular Massively Parallel Simulator</i> (<i>LAMMPS</i>) molecular dynamics code. This includes machine learning interatomic potentials, which provide a pathway to applying hybrid RMC to materials without currently available interatomic potentials. To this end, we present a methodology to use RMC to train machine learning interatomic potentials for hybrid RMC applications.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"57 Pt 6\",\"pages\":\"1780-1788\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576724009282\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724009282","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

用反蒙特卡罗法进行结构精化是解释实验衍射数据的有力工具。为了保证约束下的RMC算法得到合理的结果,混合RMC方法利用原子间势来获得物理上合理且与实验一致的解。为了扩大可以用混合RMC研究的材料范围,我们在RMC profile中实现了一个新的原子间电位约束,该约束允许灵活地应用由大规模原子/分子大规模并行模拟器(LAMMPS)分子动力学代码支持的电位。这包括机器学习原子间势,它提供了将混合RMC应用于目前没有可用原子间势的材料的途径。为此,我们提出了一种使用RMC来训练混合RMC应用的机器学习原子间势的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile.

Structure refinement with reverse Monte Carlo (RMC) is a powerful tool for interpreting experimental diffraction data. To ensure that the under-constrained RMC algorithm yields reasonable results, the hybrid RMC approach applies interatomic potentials to obtain solutions that are both physically sensible and in agreement with experiment. To expand the range of materials that can be studied with hybrid RMC, we have implemented a new interatomic potential constraint in RMCProfile that grants flexibility to apply potentials supported by the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular dynamics code. This includes machine learning interatomic potentials, which provide a pathway to applying hybrid RMC to materials without currently available interatomic potentials. To this end, we present a methodology to use RMC to train machine learning interatomic potentials for hybrid RMC applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
Thermal diffuse scattering analysis of Ag2O binary system via X-ray powder diffraction. Top dusted adhesive tape sample preparation method for the X-ray diffraction analysis of small powder sample volumes with the Bragg-Brentano setup. Journal of Applied Crystallography welcomes eight new Co-editors. A new technical solution to the problem of increasing the resolution of X-ray diffraction methods. An extended thermal pressure equation of state for sodium fluoride.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1